Solid–liquid separations with a temperature-responsive polymeric flocculant: Effect of temperature and molecular weight on polymer adsorption and deposition

2010 ◽  
Vol 348 (1) ◽  
pp. 9-23 ◽  
Author(s):  
John-Paul O’Shea ◽  
Greg G. Qiao ◽  
George V. Franks
Langmuir ◽  
2011 ◽  
Vol 28 (1) ◽  
pp. 905-913 ◽  
Author(s):  
John-Paul O’Shea ◽  
Greg G. Qiao ◽  
George V. Franks

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Hamid Ait Said ◽  
Hassan Noukrati ◽  
Hicham Ben Youcef ◽  
Ayoub Bayoussef ◽  
Hassane Oudadesse ◽  
...  

Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.


1947 ◽  
Vol 134 (875) ◽  
pp. 181-201 ◽  

Evidence has been presented indicating that the action of concentrated solutions of salts on bacterial respiration may be partly explained in terms of salting-out. It has been suggested that the material upon which this action is exerted is probably one of the proteins concerned in respiration, perhaps a dehydrogenating enzyme. This theory provides satisfactory explanations for: ( a ) the relation between salt con­centration and rate of respiration or dehydrogenase activity; ( b ) the effect of temperature on this relation; and ( c ) the effect of pH on this relation, if it is further supposed that only the zwitterionic fraction of the protein is involved. The relative actions of various salts are in fair agreement with this suggestion, but provide no very convincing evidence either for or against it. The chief point of difficulty lies in the range of concentration over which the action is manifest. With halophilic bacteria, the evidence is consonant with the above view if the protein involved is one of high molecular weight. With normal organisms the salt concentra­tions are much lower than those causing salting-out. There is a little evidence that in normal organisms the dehydrogenating enzymes are less sensitive to salts than the intact cells, which may be the source of the discrepancy. No reason for this can yet be suggested, but the property must be absent from the enzymes of halophilic organisms, and whatever it is, its absence must be the foundation of the halophilic character.


2010 ◽  
Vol 114 (4) ◽  
pp. 1568-1578 ◽  
Author(s):  
Sam Townrow ◽  
Mina Roussenova ◽  
Maria-Isabelle Giardiello ◽  
Ashraf Alam ◽  
Job Ubbink

Sign in / Sign up

Export Citation Format

Share Document