scholarly journals Copper nanowire embedded hypromellose: An antibacterial nanocomposite film

Author(s):  
Biswajoy Bagchi ◽  
Carmen Salvadores Fernandez ◽  
Manni Bhatti ◽  
Lena Ciric ◽  
Laurence Lovat ◽  
...  
2020 ◽  
Vol 15 (14) ◽  
pp. 997-1002
Author(s):  
Yu Wang ◽  
Lingling Yin ◽  
Xia Li ◽  
Ran Shang ◽  
Xiangli Yang ◽  
...  

2011 ◽  
Vol 3 (8) ◽  
pp. 91-93 ◽  
Author(s):  
Sindhu Honmute ◽  
◽  
Arunkumar Lagashetty ◽  
A. Venkataraman A. Venkataraman

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Swarup Roy ◽  
Lindong Zhai ◽  
Hyun Chan Kim ◽  
Duc Hoa Pham ◽  
Hussein Alrobei ◽  
...  

A chitosan-based nanocomposite film with tannic acid (TA) as a cross-linker and titanium dioxide nanoparticles (TiO2) as a reinforcing agent was developed with a solution casting technique. TA and TiO2 are biocompatible with chitosan, and this paper studied the synergistic effect of the cross-linker and the reinforcing agent. The addition of TA enhanced the ultraviolet blocking and mechanical properties of the chitosan-based nanocomposite film. The reinforcement of TiO2 in chitosan/TA further improved the nanocomposite film’s mechanical properties compared to the neat chitosan or chitosan/TA film. The thermal stability of the chitosan-based nanocomposite film was slightly enhanced, whereas the swelling ratio decreased. Interestingly, its water vapor barrier property was also significantly increased. The developed chitosan-based nanocomposite film showed potent antioxidant activity, and it is promising for active food packaging.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongmeng Wu ◽  
Cuibo Liu ◽  
Changhong Wang ◽  
Yifu Yu ◽  
Yanmei Shi ◽  
...  

AbstractElectrocatalytic alkyne semi-hydrogenation to alkenes with water as the hydrogen source using a low-cost noble-metal-free catalyst is highly desirable but challenging because of their over-hydrogenation to undesired alkanes. Here, we propose that an ideal catalyst should have the appropriate binding energy with active atomic hydrogen (H*) from water electrolysis and a weaker adsorption with an alkene, thus promoting alkyne semi-hydrogenation and avoiding over-hydrogenation. So, surface sulfur-doped and -adsorbed low-coordinated copper nanowire sponges are designedly synthesized via in situ electroreduction of copper sulfide and enable electrocatalytic alkyne semi-hydrogenation with over 99% selectivity using water as the hydrogen source, outperforming a copper counterpart without surface sulfur. Sulfur anion-hydrated cation (S2−-K+(H2O)n) networks between the surface adsorbed S2− and K+ in the KOH electrolyte boost the production of active H* from water electrolysis. And the trace doping of sulfur weakens the alkene adsorption, avoiding over-hydrogenation. Our catalyst also shows wide substrate scopes, up to 99% alkenes selectivity, good reducible groups compatibility, and easily synthesized deuterated alkenes, highlighting the promising potential of this method.


Author(s):  
Anike H. Virgili ◽  
Daniela C. Laranja ◽  
Patrícia S. Malheiros ◽  
Marcelo B. Pereira ◽  
Tania M.H. Costa ◽  
...  

2021 ◽  
pp. 50672
Author(s):  
Majid Alizadeh Moghadam ◽  
Reza Mohammadi ◽  
Ehsan Sadeghi ◽  
Mohammad Amin Mohammadifar ◽  
Mohammad Nejatian ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1428
Author(s):  
Agnieszka Pluta-Kubica ◽  
Ewelina Jamróz ◽  
Gohar Khachatryan ◽  
Adam Florkiewicz ◽  
Pavel Kopel

There is a serious need to develop and test new biodegradable packaging which could at least partially replace petroleum-based materials. Therefore, the objective of this work was to examine the influence of the recently developed furcellaran nanocomposite film with silver nanoparticles (obtained by an in situ method) on the quality properties of two cheese varieties: a rennet-curd (gouda) and an acid-curd (quark) cheese. The water content, physicochemical properties, microbiological and organoleptic quality of cheese, and migration of silver nanoparticles were examined. Both the number of Lactococcus and total bacteria count did not differ during storage of gouda regardless of the packaging applied. The number of Lactococcus decreased in analogous quark samples. The use of the film slowed down and inhibited the growth of yeast in gouda and quark, respectively. An inhibitory effect of this film on mold count was also observed; however, only regarding gouda. The level of silver migration was found to be lower in quark than in gouda. The film improved the microbiological quality of cheeses during storage. Consequently, it is worth continuing research for the improvement of this film in order to enable its use in everyday life.


Sign in / Sign up

Export Citation Format

Share Document