scholarly journals The Addition of the Prebiotic Fiber Oligofructose to a Maternal High Fat, Sucrose Diet During Gestation and Lactation Reduces Offspring Body Fat in Diet-Induced Obese Sprague-Dawley Rats.

2013 ◽  
Vol 37 ◽  
pp. S226
Author(s):  
Heather Paul ◽  
Marc R. Bomhof ◽  
Raylene A. Reimer
2006 ◽  
Vol 290 (2) ◽  
pp. E258-E267 ◽  
Author(s):  
S. F. Leibowitz ◽  
G.-Q. Chang ◽  
J. T. Dourmashkin ◽  
R. Yun ◽  
C. Julien ◽  
...  

The objective of this study was to investigate meal-related endocrine changes that permit one to identify Sprague-Dawley rats at normal weight that are prone (OP) vs. resistant (OR) to obesity. In blood collected via chronic cardiac catheters, a 2-h high-fat meal (HFM, 50% fat, 40 kcal) at dark onset caused a significant increase in leptin, insulin, and triglycerides compared with premeal levels. Similar to patterns in already obese compared with lean rats on a high-fat diet, these meal-induced endocrine changes in normal-weight rats on lab chow were almost twofold larger in OP rats that, compared with OR rats, subsequently accumulated 100% more fat mass on a chronic high-fat diet. These exaggerated endocrine changes were similarly observed in blood collected using a simpler tail vein puncture procedure. In three separate experiments, the HFM-induced rise in leptin was found to be the strongest, positive correlate ( r = +0.58, +0.62 and +0.64) of long-term body fat accrual. The lowest (2–5 ng/ml) vs. highest (6–9 ng/ml) scores for this post-HFM leptin measurement identified distinct OR and OP subgroups, respectively, when they were similar in body weight (340–350 g), premeal leptin (2.6–3.4 ng/ml), and meal size (40 kcal). Subsequent tests in these normal-weight OP rats revealed a distinct characteristic compared with OR rats, namely, exaggerated HFM-induced rise in expression of the orexigenic peptide galanin in the paraventricular nucleus. Thus, with this HFM-induced leptin measurement, OP rats can be identified while still at normal weight and then investigated for mechanisms that contribute to their excessive body fat accrual on a high-fat diet.


2007 ◽  
Vol 97 (3) ◽  
pp. 464-470 ◽  
Author(s):  
Fátima Pérez de Heredia ◽  
David Cerezo ◽  
Salvador Zamora ◽  
Marta Garaulet

The main objective of the present study was to examine the effects of dehydroepiandrosterone (DHEA) on the digestive efficiency of dietary protein and fat. Second, we analysed the specific changes in muscle composition induced by the hormone. DHEA was given in the diet (0·5 %, w/w) to 75-week-old, high-fat-fed Sprague–Dawley rats (n 11) for 13 weeks; age- and weight-matched rats fed on the same diet without DHEA supplementation were used as controls (n 10). To determine dietary protein and fat apparent digestibility coefficients, 1-week 24 h faecal depositions were collected. In parallel, urine N was assessed. These assays were performed twice, in the short term (2-week treatment) and in the long term (13-week treatment). Body and gastrocnemius muscle compositions were also analysed. The present results show that DHEA decreased energy intake, body weight, body fat, adipocyte size and number (P < 0·001). The feed efficiency ratio indicates that DHEA-treated rats were less efficient in transforming nutrients fed into their own biomass. Also, a short-term reduction in protein digestibility (P < 0·05) and in body-protein degradation (P < 0·01) was found in DHEA-treated rats, resulting in an increased content of body protein (P < 0·05). Gastrocnemius muscles were smaller, as a result of fat (P < 0·05) but not protein reduction. In conclusion, we confirm the slimming effect of DHEA and, for the first time, we demonstrate that DHEA has an effect at the digestive level. The anti-obesity properties of DHEA could be related to a reduction in protein digestibility in the short term and a protective effect on body protein with a selective mass loss from body fat.


2006 ◽  
Vol 76 (5) ◽  
pp. 271-279 ◽  
Author(s):  
Pérez de Heredia ◽  
Garaulet ◽  
Puy Portillo ◽  
Zamora

Susceptibility to dietary obesity was studied in Wistar and Sprague-Dawley rats submitted to different high-energy diets. Experiment 1: female Sprague-Dawley rats were fed chow (n = 6) or a high-fat diet (n = 12) for 22 weeks. Experiment 2: Wistar rats were fed chow or a high-fat diet, and Sprague-Dawley rats were given chow, high-fat, sweet condensed milk, or cafeteria diets, for eight weeks (6 animals per group). Food intake and body weight were recorded weekly. Adipose tissue was collected from periovarian, mesenteric, and subcutaneous regions and adipocytes were isolated and measured. Both strains showed similar energy intake and body weight gain. Wistar rats reached greater final body fat contents than Sprague-Dawley rats, regardless of the type of diet. However, resistance to dietary obesity was found in 100% of cases in both experiments. None of the diets succeeded in increasing body fat accumulation when compared to control groups. All adipose tissue locations were equally unaffected, with periovarian fat cells being larger than those in mesenteric and subcutaneous regions in all the groups. In view of the strong resistance to obesity observed in rats, it should be important for researchers to transmit the difficulties of inducing dietary obesity in these animals, in order to prevent bias in science interpretation.


1996 ◽  
Vol 80 (4) ◽  
pp. 1173-1179 ◽  
Author(s):  
R. A. Lapachet ◽  
W. C. Miller ◽  
D. A. Arnall

To study how diet composition affects exercise endurance and body composition, 48 male Sprague-Dawley rats were treadmill trained for 8 wk while consuming either a high-fat (F) diet or high-carbohydrate (C) diet. The diets were switched for one-half the number of rats in each group 3 days before the animals were killed, during which feeding time the rats did not exercise. One-half of rats receiving each of the four diet combinations were taken at rest (R) or exhaustion (E), resulting in eight groups: CCR, CFR, FFR, FCR, CCE CFE, FFE, and FCE. An analysis of variance revealed that resting glycogen in the FCR group was enhanced in muscle (19-33%) and liver (23%) compared with controls. Each F group's exercise time to exhaustion [CFE, 322.9 +/- 25.0; FFE, 356.8 +/- 37.8; FCE, 467.0 +/- 32.6 (SE) min] was different (P < 0.05) from control (CCE, 257.5 +/- 29.2 min). Postexercise glycogen was equivalent among all dietary groups, were muscle triglycerides. The FF and FC groups had higher 3-hydroxyacyl-CoA dehydrogenase activity in soleus muscle than either CC or CF animals. After training, body weights were similar between the two dietary groups; however, percent body fat was 17% greater after the F diet, even though F diet animals voluntarily consumed 12% less energy than did C diet animals. These data suggest that exercise endurance time is optimized in trained rats that receive a carbohydrate load after adaptation to a F diet. However, despite intense exercise training, the F diet promotes body fat deposition, and the health consequences of following such a regimen are still unknown.


Metabolism ◽  
2021 ◽  
Vol 116 ◽  
pp. 154497
Author(s):  
Elif Günalan ◽  
Meyli Ezgi Karagöz ◽  
Bayram Yılmaz ◽  
Burcu Gemici

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Catherine Crinigan ◽  
Matthew Calhoun ◽  
Karen L. Sweazea

Chronic high fat feeding is correlated with diabetes and kidney disease. However, the impact of short-term high fat diets (HFD) is not well-understood. Six weeks of HFD result in indices of metabolic syndrome (increased adiposity, hyperglycemia, hyperinsulinemia, hyperlipidemia, hyperleptinemia, and impaired endothelium-dependent vasodilation) compared to rats fed on standard chow. The hypothesis was that short-term HFD would induce early signs of renal disease. Young male Sprague-Dawley rats were fed either HFD (60% fat) or standard chow (5% fat) for six weeks. Morphology was determined by measuring changes in renal mass and microstructure. Kidney function was measured by analyzing urinary protein, creatinine, and hydrogen peroxide (H2O2) concentrations, as well as plasma cystatin C concentrations. Renal damage was measured through assessment of urinary oxDNA/RNA concentrations as well as renal lipid peroxidation, tumor necrosis factor alpha (TNFα), and interleukin 6 (IL-6). Despite HFD significantly increasing adiposity and renal mass, there was no evidence of early stage kidney disease as measured by changes in urinary and plasma biomarkers as well as histology. These findings suggest that moderate hyperglycemia and inflammation produced by short-term HFD are not sufficient to damage kidneys or that the ketogenic HFD may have protective effects within the kidneys.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Michael J Duryee ◽  
Anand Dusad ◽  
Scott W Shurmur ◽  
Michael D Johnston ◽  
Robert P Garvin ◽  
...  

Introduction Malondialdehyde/Acetaldehyde (MAA) modified proteins have been suggested to play a role in the development/progression of atherosclerosis. Circulating antibodies directed against these proteins have recently been shown to be associated with the severity of the disease. More specifically, the isotype of the antibody to MAA correlated with either an acute MI (IgG) or stable plaque formation (IgA) formation. MAA is thought to form as a result of the oxidation of fat(s) and thus the concentration and antibody response should reflect the amount of fat in the diet. Objective The purpose of this study was to evaluate the antibody responses to MAA modified proteins following immunization and high fat western diet feeding in rats. Methods Male Sprague Dawley rats were immunized with MAA-modified protein weekly for 5 weeks and then assayed for antibodies to these proteins. Animals were then separated into the following groups: chow sham, chow MAA immunized, high fat sham, and high fat MAA immunized. The high fat animals were fed a Western diet with 2-thiouracil for 12 weeks, bled every 3 weeks, and serum assayed for the presence of circulating MAA antibodies. Results Prior to feeding with high fat diet, rats immunized with MAA-modified protein had a significant increase (P<0.001) in serum antibodies directed against these modified proteins compared to controls (N of 4 per group). Following feeding of high fat diet antibody concentrations increased 6 fold in the high fat MAA immunized group compared to the chow MAA immunized group (P<0.05). Antibodies in the high fat sham and chow sham had only minimal increases in antibodies to these proteins. Conclusions These data demonstrate that following immunization with MAA-modified proteins, circulating antibodies are produced that increase following consumption of a high fat Western diet. It suggests that MAA-modified proteins are produced at low levels following normal diet, producing antibodies which act as a normal clearance method for altered protein. When high fat consumption increases these antibody levels are increased in response to the oxidative stress. Implications Use of these antibodies as a biomarker in the future may help predict the onset or progression of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document