EU COST Action 628: life cycle assessment (LCA) of textile products, eco-efficiency and definition of best available technology (BAT) of textile processing

2007 ◽  
Vol 15 (13-14) ◽  
pp. 1259-1270 ◽  
Author(s):  
Eija Nieminen ◽  
Michael Linke ◽  
Marion Tobler ◽  
Bob Vander Beke
2021 ◽  
Vol 13 (6) ◽  
pp. 3436
Author(s):  
Hani A. Abu-Qdais ◽  
Muna A. Abu-Dalo ◽  
Yazan Y. Hajeer

Due to their properties, silver nanoparticles (AgNPs) are widely used in consumer products. The widespread use of these products leads to the release of such nanoparticles into the environment, during manufacturing, use, and disposal stages. Currently there is a high margin of uncertainty about the impacts of nano products on the environment and human health. Therefore, different approaches including life cycle assessment (LCA) are being used to evaluate the environmental and health impacts of these products. In this paper, a comparison between four different AgNP synthesis methods was conducted. In addition, four textile products that contain AgNPs were subjected to comparison using LCA analysis to assess their environmental and public health impacts using SimaPro modeling platform. Study results indicate that using alternative methods (green) to AgNPs synthesis will not necessarily reduce the environmental impacts of the synthesizing process. To the best of our knowledge, this is the first study that has compared and assessed the environmental burdens associated with different nanosilver-based textile products at different disposal scenarios. The synthesis of 1 kg of AgNPs using modified Tollens’ method resulted in 580 kg CO2 eq, while 531 kg CO2 eq resulted from the chemical approach. Furthermore, the manufacturing stage had the highest overall impacts as compared to other processes during the life cycle of the product, while the product utilization and disposal stages had the highest impacts on ecotoxicity. Sensitivity analysis revealed that under the two disposal scenarios of incineration and landfilling, the impacts were sensitive to the amount of AgNPs.


2020 ◽  
Vol 12 (22) ◽  
pp. 9313
Author(s):  
Julien Bongono ◽  
Birol Elevli ◽  
Bertrand Laratte

More and more efforts are directed towards the standardization of the methods of determining the functional unit (FU) in a Life Cycle Assessment (LCA). These efforts concern the development of theories and detailed methodological guides, but also the evaluation of the quality of the FU obtained. The objective of this article is to review this work in order to propose, using a multiscale approach, a method for defining the FU in the mining sector, which takes into account all the dimensions of the system under study. In this first part, the emphasis is on identifying the shortcomings of the FU. The absence of a precise normative framework specific to each sector of activity, as well as the complex, multifunctional and hard-to-scale nature of the systems concerned, are at the origin of the flexibility in the selection of the FU. This lack of a framework, beyond generating a heterogeneous definition of the FU for the same system, most often leads to an incomplete formulation of this sensitive concept of LCA. It has been found that key parameters such as the end-use of a product or process, as well as the interests of stakeholders, are hardly taken into account in the specification of the FU.


2013 ◽  
Vol 371 ◽  
pp. 235-239
Author(s):  
Dumitru Soaita

EDM is presently known as the best available technology (BAT) to solve various problems in machine construction. This paper attempts to provide some answers to the question - is EDM a clean technology? Working methodology consisted in processing literature data and data obtained from authors experimental research on the environmental impact of EDM. In conclusion, there are several issues to be solved before EDM can be considered a clean technology. The article also suggests solutions for these problems.


2016 ◽  
Vol 35 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Rafael Laurenti ◽  
Åsa Moberg ◽  
Åsa Stenmarck

Knowledge about the total waste generated by the production of consumer goods can help raise awareness among policy-makers, producers and consumers of the benefits of closing loops in a future circular economy, avoiding unnecessary production and production steps and associated generation of large amounts of waste. In strict life cycle assessment practice, information on waste outputs from intermediate industrial processes of material and energy transformation is translated into and declared as potential environmental impacts, which are often not reported in the final results. In this study, a procedure to extract available intermediate data and perform a systematic pre-consumer waste footprint analysis was developed. The pre-consumer waste footprint concept was tested to analyse 10 generic products, which provided some novel and interesting results for the different product categories and identified a number of challenges that need to be resolved in development of the waste footprint concept. These challenges include standardised data declaration on waste in life cycle assessment, with a separation into waste categories illustrating the implicit environmental and scale of significance of waste types and quantities (e.g. hazardous waste, inert waste, waste for recycling/incineration) and establishment of a common definition of waste throughout sectors and nations.


Author(s):  
S. M. Samindi M. K. Samarakoon ◽  
R. M. Chandima Ratnayake

Abstract Technology qualification (TQ) has been employed to perform assessments to verify whether a new technology performs within pre-specified functional limits after an application. If a best available technology (BAT) is used in a new environment, it is considered as a new technology. The TQ is vital in the implementation of best available technology (BAT) in a new environment. Risk based technology qualification provides an optimal approach for performing TQ of a BAT when it is necessary to implement in a new environment. This manuscript first demonstrates the standard TQ process. Secondly, it presents development of a risk matrix for failure mode identification and consequence risk ranking (FMI&CRR). Thirdly, it demonstrates the use of FMI&CRR in a risk-based technology qualification process. Finally, it presents use of the risk matrix to perform TQ on moorings solutions that have been selected as a BAT for a floating wind turbine sub-system. Fuzzy inference system has been used to assess the risk rank to minimize the variability that causes due to experts’ performance variability. Illustrative risk based TQ assessment has been performed and presented. The developed risk based TQ process (TQP), fuzzy inference system supported risk rank estimation, and illustrative risk based TQ recommendation are significantly important for practitioners while performing FMI&CRR in larger scale offshore floating wind turbines’ TQ projects.


Author(s):  
Marcos Esterman ◽  
Maria E. Fumagalli ◽  
Brian Thorn ◽  
Callie Babbitt

With the increased concern over the impact that product and processes have on the environment several tools for environmental impact assessment have been developed. Life Cycle Assessment (LCA) is perhaps the most broadly known and used. The use of LCA is common in industry and there is a growing interest to improve the approach since several unresolved problems have been identified with its use. One important issue to resolve is the proper definition of the functional unit. The stated primary goal of the functional unit in LCA is to ensure comparability of LCA results; however, when reviewing the literature, LCA practitioners remark that comparing LCA studies is a very difficult task. The attributed reasons for this problem are the lack of standardized assumptions and practices, including the definition of the functional unit. Even though several unresolved problems present in LCA have had solutions proposed, a clear and actionable solution to the specific problem of functional unit definition is still not available. This paper will introduce system engineering and functional analysis concepts to the goal and scope definition phase of LCA in order to provide a framework for system definition, system boundary definition, and reference flows identification. System engineering principles and functional analysis have been extensively used to aid the design process, yet these approaches have not been effectively applied to the LCA domain. The benefits associated with the proposed framework include improved comparability of LCAs, dynamic updating of LCAs, and the integration of LCA into early stage product development.


Author(s):  
Timothy G. Gutowski ◽  
Sahil Sahni ◽  
Julian M. Allwood ◽  
Michael F. Ashby ◽  
Ernst Worrell

In this paper, we review the energy requirements to make materials on a global scale by focusing on the five construction materials that dominate energy used in material production: steel, cement, paper, plastics and aluminium. We then estimate the possibility of reducing absolute material production energy by half, while doubling production from the present to 2050. The goal therefore is a 75 per cent reduction in energy intensity. Four technology-based strategies are investigated, regardless of cost: (i) widespread application of best available technology (BAT), (ii) BAT to cutting-edge technologies, (iii) aggressive recycling and finally, and (iv) significant improvements in recycling technologies. Taken together, these aggressive strategies could produce impressive gains, of the order of a 50–56 per cent reduction in energy intensity, but this is still short of our goal of a 75 per cent reduction. Ultimately, we face fundamental thermodynamic as well as practical constraints on our ability to improve the energy intensity of material production. A strategy to reduce demand by providing material services with less material (called ‘material efficiency’) is outlined as an approach to solving this dilemma.


Sign in / Sign up

Export Citation Format

Share Document