Greenhouse gas emissions from production and use of used cooking oil methyl ester as transport fuel in Thailand

2009 ◽  
Vol 17 (9) ◽  
pp. 873-876 ◽  
Author(s):  
Somporn Pleanjai ◽  
Shabbir H. Gheewala ◽  
Savitri Garivait
2019 ◽  
Vol 35 (6) ◽  
pp. 1057-1065
Author(s):  
Isaac N Itodo ◽  
Rimamnuskep Stephen ◽  
Theresa K Kaankuka

Abstract. Cheap renewable fuels are needed to replace fossil fuels to reduce greenhouse gas emissions that are causing global warming with the attendant negative consequences. The properties of blends of spent groundnut oil methyl ester (SGOME) and fossil diesel and the emissions from these blends as engine fuel were determined. Spent groundnut oil (SGO) was transesterified into SGOME using methanol and potassium hydroxide as catalyst. The SGOME was blended with fossil diesel and the properties determined and compared to fossil diesel (B0). The pure SGOME (B100) was blended with 90%, 80%, 70%, 60%, and 50% diesel to obtain the B10, B20, B30, B40, and B50 blends of biodiesel, respectively. The properties of the SGOME and the blends were determined according to ASTM and AOCS standards for biodiesel. The properties determined were flash point, carbon residue after combustion, pour and cloud points, kinematic and dynamic viscosities. The blends were used as fuel in a single cylinder 4-stroke water-cooled compression ignition engine that was coupled to a dynamometer from which the tail pipe emissions were measured using gas analyzers. The emissions were measured after the engine had reached a steady state at no load (0 kW) and 1 kW at 3 min interval for 15 min for each blend in 3 replicates. The greenhouse gas emissions measured were nitrogen oxide (NOx),hydrogen sulphide (H2S), particulate matter (PM), sulphur dioxide(SO2),and carbon monoxide (CO). The analysis of variance (ANOVA) at p = 0.05 was used to determine if there was significant difference in the amount of gas emitted from the various blend fuels. The F-LSD was used to separate the means where there was significant difference. The higher blends of the SGOME had better flash point, pour point, and dynamic viscosity than the lower blends. However, the lower blends had better cloud point. The carbon residue after combustion of the SGOME blends was better than that of the fossil diesel. The NOx, PM, SO2, and CO emissions were significantly different from the various blends of the SGOME. However, the H2S emission was not significantly different. Loading the engine did not significantly affect the NOx, H2S, SO2, and CO emissions but significantly affected the PM emission. The PM, CO, and SO2 emissions were highest from the fossil diesel and the lower blends (B10, B20, and B30) and lowest from the higher blends (B40, B50, and B100) at both engine loads. The NOx emission was lowest from the fossil diesel and the lower blends. The use of B20 increased the NOx emission by 10% at both engine loads. The H2S emission was the same for the fossil diesel, pure SGOME (B100), and the blends (B10–B50) at both engine loads. The SGOME fuel reduced tail pipe emission of PM, CO, and SO2 by 26%, 45%, and 78%, respectively. The higher blends had a considerably lower amount of toxic emissions at both engine loads. Keywords: Blends, Diesel, Emissions, Engine, Fuel, Properties, Spent groundnut oil methyl ester.


2009 ◽  
pp. 107-120 ◽  
Author(s):  
I. Bashmakov

On the eve of the worldwide negotiations of a new climate agreement in December 2009 in Copenhagen it is important to clearly understand what Russia can do to mitigate energy-related greenhouse gas emissions in the medium (until 2020) and in the long term (until 2050). The paper investigates this issue using modeling tools and scenario approach. It concludes that transition to the "Low-Carbon Russia" scenarios must be accomplished in 2020—2030 or sooner, not only to mitigate emissions, but to block potential energy shortages and its costliness which can hinder economic growth.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


Sign in / Sign up

Export Citation Format

Share Document