Optimal design of an efficient polyphenols extraction process for high concentrated phenols wastewater

2017 ◽  
Vol 165 ◽  
pp. 1395-1406 ◽  
Author(s):  
Peizhe Cui ◽  
Bokun Chen ◽  
Siyu Yang ◽  
Yu Qian
Author(s):  
A.I Usenu

The rate of Soybean (Glycine max) oil (SBO) extraction with a ternary solvent mixture (water, ethanol, and ethyl acetate) optimised with I-optimal Design (IOD) under the Mixture Methodology of the Design Expert (12.0.1.0). The data obtained were analysed statistically. The effect of extraction time (60-180 mins) and temperature (65-70 °C) on SBO was investigated and data obtained were used to evaluate the suitable kinetic and thermodynamic properties of the extraction. The maximum Rate of Oil Yield (32.35 mg/min) was achieved at the solvent mixture of 9.17% water, 6.67% ethanol, and 84.17% ethyl acetate. The Quadratic model best describes the Rate of Oil Yield, with a correlation coefficient (R2) of 0.9922 and an Adjusted R2 of 0.9825. The rate equation for the extraction process is a first-order reaction with ‘n’ value of 1.12756 (≅1.000) while the activation energy (Ea) and Arrhenius constant were 6508.1 kJ/mol and 38.901 s-1, respectively. The study has demonstrated the suitability of I-Optimal Design for the investigation of the Rate of Oil Yield from soybean and the result could be employed in oil extraction process design.


Author(s):  
Burton B. Silver

Tissue from a non-functional kidney affected with chronic membranous glomerulosclerosis was removed at time of trnasplantation. Recipient kidney tissue and donor kidney tissue were simultaneously fixed for electron microscopy. Primary fixation was in phosphate buffered gluteraldehyde followed by infiltration in 20 and then 40% glycerol. The tissues were frozen in liquid Freon and finally in liquid nitrogen. Fracturing and replication of the etched surface was carried out in a Denton freeze-etch device. The etched surface was coated with platinum followed by carbon. These replicas were cleaned in a 50% solution of sodium hypochlorite and mounted on 400 mesh copper grids. They were examined in an Siemens Elmiskop IA. The pictures suggested that the diseased kidney had heavy deposits of an unknown substance which might account for its inoperative state at the time of surgery. Such deposits were not as apparent in light microscopy or in the standard fixation methods used for EM. This might have been due to some extraction process which removed such granular material in the dehydration steps.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


Author(s):  
Muklas Rivai

Optimal design is a design which required in determining the points of variable factors that would be attempted to optimize the relevant information so that fulfilled the desired criteria. The optimal fulfillment criteria based on the information matrix of the selected model.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 17-24 ◽  
Author(s):  
HAKIM GHEZZAZ ◽  
LUC PELLETIER ◽  
PAUL R. STUART

The evaluation and process risk assessment of (a) lignin precipitation from black liquor, and (b) the near-neutral hemicellulose pre-extraction for recovery boiler debottlenecking in an existing pulp mill is presented in Part I of this paper, which was published in the July 2012 issue of TAPPI Journal. In Part II, the economic assessment of the two biorefinery process options is presented and interpreted. A mill process model was developed using WinGEMS software and used for calculating the mass and energy balances. Investment costs, operating costs, and profitability of the two biorefinery options have been calculated using standard cost estimation methods. The results show that the two biorefinery options are profitable for the case study mill and effective at process debottlenecking. The after-tax internal rate of return (IRR) of the lignin precipitation process option was estimated to be 95%, while that of the hemicellulose pre-extraction process option was 28%. Sensitivity analysis showed that the after tax-IRR of the lignin precipitation process remains higher than that of the hemicellulose pre-extraction process option, for all changes in the selected sensitivity parameters. If we consider the after-tax IRR, as well as capital cost, as selection criteria, the results show that for the case study mill, the lignin precipitation process is more promising than the near-neutral hemicellulose pre-extraction process. However, the comparison between the two biorefinery options should include long-term evaluation criteria. The potential of high value-added products that could be produced from lignin in the case of the lignin precipitation process, or from ethanol and acetic acid in the case of the hemicellulose pre-extraction process, should also be considered in the selection of the most promising process option.


Sign in / Sign up

Export Citation Format

Share Document