Multi-objective optimization of green technology thermal drilling process using grey-fuzzy logic method

2019 ◽  
Vol 236 ◽  
pp. 117711 ◽  
Author(s):  
R. Kumar ◽  
N. Rajesh Jesudoss Hynes ◽  
Catalin Iulian Pruncu ◽  
J. Angela Jennifa Sujana
Author(s):  
Vahid Tahmasbi ◽  
Majid Ghoreishi ◽  
Mojtaba Zolfaghari

The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yuan Jiang ◽  
Qin Xu ◽  
Pengfei Zhang ◽  
Kang Nai ◽  
Liping Liu

As an important part of Doppler velocity data quality control for radar data assimilation and other quantitative applications, an automated technique is developed to identify and remove contaminated velocities by birds, especially migrating birds. This technique builds upon the existing hydrometeor classification algorithm (HCA) for dual-polarimetric WSR-88D radars developed at the National Severe Storms Laboratory, and it performs two steps. In the first step, the fuzzy-logic method in the HCA is simplified and used to identify biological echoes (mainly from birds and insects). In the second step, another simple fuzzy logic method is developed to detect bird echoes among the biological echoes identified in the first step and thus remove bird-contaminated velocities. The membership functions used by the fuzzy logic method in the second step are extracted from normalized histograms of differential reflectivity and differential phase for birds and insects, respectively, while the normalized histograms are constructed by polarimetric data collected during the 2012 fall migrating season and sorted for bird and insects, respectively. The performance and effectiveness of the technique are demonstrated by real-data examples.


2021 ◽  
pp. 3790-3803
Author(s):  
Heba Kh. Abbas ◽  
Haidar J. Mohamad

    The Fuzzy Logic method was implemented to detect and recognize English numbers in this paper. The extracted features within this method make the detection easy and accurate. These features depend on the crossing point of two vertical lines with one horizontal line to be used from the Fuzzy logic method, as shown by the Matlab code in this study. The font types are Times New Roman, Arial, Calabria, Arabic, and Andalus with different font sizes of 10, 16, 22, 28, 36, 42, 50 and 72. These numbers are isolated automatically with the designed algorithm, for which the code is also presented. The number’s image is tested with the Fuzzy algorithm depending on six-block properties only. Groups of regions (High, Medium, and Low) for each number showed unique behavior to recognize any number. Normalized Absolute Error (NAE) equation was used to evaluate the error percentage for the suggested algorithm. The lowest error was 0.001% compared with the real number. The data were checked by the support vector machine (SVM) algorithm to confirm the quality and the efficiency of the suggested method, where the matching was found to be 100% between the data of the suggested method and SVM. The six properties offer a new method to build a rule-based feature extraction technique in different applications and detect any text recognition with a low computational cost.


Sign in / Sign up

Export Citation Format

Share Document