Application of Anaerobic Digestion Model No. 1 for modeling anaerobic digestion of vegetable crop residues: Fractionation of crystalline cellulose

2020 ◽  
pp. 124865
Author(s):  
Pengfei Li ◽  
Zhanjiang Pei ◽  
Di Liu ◽  
Fengmei Shi ◽  
Su Wang ◽  
...  
Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 26 ◽  
Author(s):  
Pengfei Li ◽  
Wenzhe Li ◽  
Mingchao Sun ◽  
Xiang Xu ◽  
Bo Zhang ◽  
...  

There is a lack of literature reporting the measurement and prediction of biochemical methane potential (BMP) of vegetable crop residues (VCRs) and similarly, the kinetic assessment on the anaerobic digestion process of VCR is rarely investigated. In this paper, the BMP tests of five different vegetable (snap bean, capsicum, cucumber, eggplant, and tomato) crop residues were conducted at feed to inoculum ratio (F/I) of 2.0 under mesophilic (36 ± 1 °C) conditions. A series of single-variable and multiple-variable regression models were built based on organic components (hemicellulose, cellulose, lignin, total fat, total sugar, and crude protein) for BMP prediction. Three kinetic models, including the first-order kinetic model, the Chen and Hashimoto model, and the modified Gompertz model, were used to simulate the methane yield results of VCR and obtain valuable model parameters simultaneously. As a result, the BMPs and volatile solids (VS) degradation degree of different VCRs were respectively in the range of 94.2–146.8 mL g−1 VS and 40.4–49.9%; the regression prediction models with variables lignin (R2 = 0.704, p = 0.076), variables crude protein and lignin (R2 = 0.976, p = 0.048), and variables total fat, hemicellulose, and lignin (R2 = 0.999, p = 0.027) showed the best performance on BMP prediction among the single-factor, two-factor, and three-factor models, respectively. In addition, compared to the other two kinetic models, the modified Gompertz model could be excellently fitted (R2 = 0.986–0.998) to the results of BMP experiment, verification deviations within 0.3%.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Xiao-Shuang Shi ◽  
Jian-Jun Dong ◽  
Jun-Hong Yu ◽  
Hua Yin ◽  
Shu-Min Hu ◽  
...  

Three semicontinuous continuous stirred-tank reactors (CSTR) operating at mesophilic conditions (35°C) were used to investigate the effect of hydraulic retention time (HRT) on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs.


2017 ◽  
Vol 59 ◽  
pp. 498-507 ◽  
Author(s):  
Jongkeun Lee ◽  
Joonrae Roger Kim ◽  
Seulki Jeong ◽  
Jinwoo Cho ◽  
Jae Young Kim

2005 ◽  
Vol 43 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Barbara Chaves ◽  
Andrews Opoku ◽  
Stefaan De Neve ◽  
Pascal Boeckx ◽  
Oswald Van Cleemput ◽  
...  

2020 ◽  
Vol 113 (3) ◽  
pp. 1315-1322 ◽  
Author(s):  
David Francis Cook ◽  
Robert A Deyl ◽  
Jeremy B Lindsey ◽  
Mario F D’Antuono ◽  
Donald V Telfer ◽  
...  

Abstract Stable fly (Stomoxys calcitrans L.) remain a significant pest affecting livestock and rural communities on the Swan Coastal Plain around Perth, Western Australia. Vegetable crop residues remaining after harvest enable stable fly development. Left untreated they can produce from several hundred to >1,000 stable fly/m2 of post-harvest residues. We studied the effect of burial and compaction of sandy soils on adult emergence of stable fly and house fly (Musca domestica L.) (Diptera: Muscidae). Adults of both fly species can move up through 50 cm of loose, dry sand, however at depths greater than 60 cm, emergence rapidly declines with <5% of adults surviving under 100 cm of soil. Burial of stable fly larvae and pupae under 15 cm of soil followed by compaction using a static weight dramatically reduced adult emergence. Moist soil compacted at ≥3 t/m2 completely prevented stable fly emergence whereas house fly emergence was not affected. One t/m2 of compaction resulted in <5% emergence of stable fly buried as pupae. Soil that was easily compactible (i.e., high silt, fine sand and clay content) reduced stable fly emergence more than soil with more coarse sand and low clay content. This study demonstrates the potential for a novel and chemical-free option for controlling stable fly development from vegetable crop post-harvest residue. Field trials are needed to confirm that burial and compaction of vegetable post-harvest residues using agricultural machinery can dramatically reduce the subsequent emergence of adult stable fly on a large scale.


Sign in / Sign up

Export Citation Format

Share Document