Estimating the optimal internal carbon prices for balancing forest wood production and carbon sequestration: The case of northeast China

2021 ◽  
Vol 281 ◽  
pp. 125342
Author(s):  
Lingbo Dong ◽  
Pete Bettinger ◽  
Zhaogang Liu
Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1019
Author(s):  
Yuji Sakai ◽  
Masataka Nakamura ◽  
Chang Wang

Increasing soil carbon storage and biomass utilization is an effective process for mitigating global warming. Coal bio-briquettes (CBB) are made using two low-ranked coals with high sulfur content, corn stalks, and calcium hydroxide, and the combustion ash can ameliorate the physicochemical properties in salt-affected soil. CBB ash contains mainly calcium compounds, such as calcium sulfate, calcium hydroxide, and calcium carbonate, and coal fly ash and biomass ash. In this paper, changes in soil carbon and nitrogen content through salt-affected soil amelioration during 5 months using two CBB ashes and pig manure were examined in Northeast China. Application rates of CBB ash were 0 tha−1 (control), 11.6 tha−1, 23.2 tha−1, 46.4 tha−1, and 69.6 tha−1. Consequently, total carbon content in topsoil (0–0.15 m) after harvest of maize in all test fields indicated a range between 27.7 tCha−1 and 50.2 tCha−1, and showed increased levels compared to untreated salt-affected soil. In a 3.0% (69.6 tha−1) application plot of only CBB ash with higher carbon and higher exchangeable Ca2+, the carbon content increased by 51.5% compared to control plot, and changes in carbon sequestration compared to untreated soil was roughly twice that of the control plot. CBB ash contributed to carbon application and pig manure supply as a form of N fertilization in the case of all test plots. Changes in carbon content due to soil amelioration have a significant relationship with changes in corn production and soil chemical properties, such as pH, Na+, Cl−, sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP). Therefore, CBB production from low-ranked coal and waste biomass, and the use of CBB ash in agriculture is advocated as an effective means for sequestering carbon.


2001 ◽  
Vol 31 (11) ◽  
pp. 2004-2013 ◽  
Author(s):  
Jari Liski ◽  
Ari Pussinen ◽  
Kim Pingoud ◽  
Raisa Mäkipää ◽  
Timo Karjalainen

Regulating the rotation length of tree stands is an effective way to manage the carbon budget of forests. We analyzed, using models, how a 30-year change in rotation length from the recommended 90 years would change the carbon and energy budgets of typical wood-production and wood-use chains in Finland. Shortening the rotation length towards the culmination age of mean annual increment decreased the carbon stock of trees but increased the carbon stock of soil, because the production of litter and harvest residues increased. Changes in the carbon stock of wood products varied with tree species depending on volumes and timber sorts harvested, manufacturing processes and products manufactured. The Scots pine (Pinus sylvestris L.) chain stored the largest total amount of carbon when applying the longest rotation length and the Norway spruce (Picea abies (L.) Karst.) chain, when applying the shortest rotation length. Fossil carbon emissions and energy use in harvesting and manufacture increased when the rotation length was shortened and pulpwood harvests increased, especially in the spruce chain. We concluded that longer rotation length at the sites of both tree species would be favourable to carbon sequestration. The costs of this would be decreased timber harvests and decreased revenues of landowners. Our results demonstrate the importance of accounting for the whole wood-production and wood-use chain, including fossil carbon emissions, when analysing the effects of rotation length on forest carbon sequestration.


2009 ◽  
Vol 96 (3) ◽  
pp. 421-441 ◽  
Author(s):  
Alejandro Caparrós

Ecohydrology ◽  
2011 ◽  
Vol 4 (2) ◽  
pp. 211-224 ◽  
Author(s):  
Gang Dong ◽  
Jixun Guo ◽  
Jiquan Chen ◽  
Ge Sun ◽  
Song Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document