Environmental impacts of Brazilian beef cattle production in the Amazon, Cerrado, Pampa, and Pantanal biomes

2021 ◽  
pp. 127750
Author(s):  
Milene Dick ◽  
Marcelo Abreu da Silva ◽  
Rickiel Rodrigues Franklin da Silva ◽  
Otoniel Geter Lauz Ferreira ◽  
Manoel de Souza Maia ◽  
...  
2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 155-155
Author(s):  
Jessica Gilreath ◽  
Al Rotz ◽  
Sara Place ◽  
Greg Thoma ◽  
Tryon Wickersham

Abstract Our objective was to evaluate effects of technological management strategies on environmental impacts and net returns of feedlot operations in the United States. Feedlot operations were simulated with the Integrated Farm System Model (IFSM 4.6; USDA-ARS, University Park, PA) to quantify baseline environmental impacts of feedlot production and full US beef cattle production systems. Strategies simulated included: ionophore, implant, ractopamine hydrochloride, combined management (ionophore, implant, and ractopamine hydrochloride; I+I+R), lubabegron, reduced mortality rate, and improved fiber digestion. Days on feed were adjusted whenever necessary and according to production practices typical of commercial feedlots. Subsequently, annual number of cattle finished by the operation was adjusted according to days on feed to maintain consistent one-time capacities. Mitigation strategies were individually modeled and simulated in IFSM for each feedlot operation to calculate intensities (expressed per kg gain) for greenhouse gas (GHG) emissions, fossil energy use, blue water consumption, and reactive nitrogen loss. Additionally, net returns to management were estimated for each feedlot operation. Feedlots were then integrated with simulations of cow-calf, stocker, and backgrounding operations to estimate environmental intensities (expressed per kg carcass weight) for the full beef cattle production system. Carbon emission intensity was reduced most using the I+I+R strategy (10%), followed by implant (6%) and ionophore (5%) strategies alone. Similarly, energy use intensity was reduced the greatest by I+I+R (9%), ionophore (5%), and implants (4%). Reductions in water use intensity were also greatest using I+I+R (9%). Net returns increased for all strategies compared to baseline net return with the greatest improvements observed for I+I+R ($114/finished animal) and implants ($66/animal). Consistent results were observed for all strategies simulated across all four environmental intensities when quantified for the full cattle production system. Implementing I+I+R (7%), ractopamine hydrochloride (4%), and lubabegron (4%) in feedlots resulted in the greatest reductions in environmental emissions.


2014 ◽  
Vol 160 ◽  
pp. 21-28 ◽  
Author(s):  
Maria Isabel Pravia ◽  
Olga Ravagnolo ◽  
Jorge Ignacio Urioste ◽  
Dorian J. Garrick

2021 ◽  
Vol 194 ◽  
pp. 103247
Author(s):  
Maria Paula Cavuto Abrão Calvano ◽  
Ricardo Carneiro Brumatti ◽  
Jacqueline Cavalcante Barros ◽  
Marcos Valério Garcia ◽  
Kauê Rodriguez Martins ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 98-99
Author(s):  
Timothy DelCurto ◽  
Sam Wyffels

Abstract Designing research for beef cattle production in rangeland environments is an ongoing challenge for researchers worldwide. Specifically, creating study designs that mirror actual production environments yet have enough observations for statistical inference is a challenge that often hinders researchers in efforts to publish their observations. Numerous journals will accept “case study” or observational results that lack valid statistical inference. However, these journals are limited in number and often lack impact. Approaches are available to gain statistical inference by creating multiple observations within a common group of animals. Approaches to increasing statistical observations will be discussed in this presentation. Modeling animal behavior and performance on extensive rangeland landscapes is commonly practiced in wildlife ecology and, more recently, has been published in Animal Science journals. Additionally, new technology has made it possible to apply treatments (e.g., supplementation studies) to individual animals on extensive environments where large, diverse herds/flocks of cattle/sheep are managed as a single group. Use of individual animal identification (EID) and feed intake technology has opened a wide range of research possibilities for beef cattle production systems research in rangeland environments. Likewise, global positioning system (GPS) collars and activity monitors have created the opportunity to evaluate animal grazing behavior in remote and extensive landscapes. The use of multiple regression models to evaluate resource use in extensive environments will, in turn, help managers optimize beef cattle production and the sustainable use of forage/rangeland resources. Embracing new technologies such as GPS, activity monitors, EID tags, and feed intake monitors combined with multiple regression modeling tools will aid in designing and publishing beef cattle production research in extensive rangeland environments.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 430-430
Author(s):  
Andre Pastori D Aurea ◽  
Abmael S da Silva Cardoso ◽  
Lauriston Bertelli Fernandes ◽  
Ricardo Andrade Reis ◽  
Luis Eduardo Ferreira ◽  
...  

Abstract In Brazil beef cattle production is one of the most important activities in the agricultural sector and has an important impact on environmental and resources consumption. In this study assessed greenhouses gases (GHG) impacts from on farms representative productive system and the possible improvements of the production chain. Primary data from animal production index and feeding were collected from 17 farms, which covers 300.000 animals and 220.000 hectares. Emissions of methane, nitrous oxide and carbon dioxide were made using intergovernmental panel on climate change (IPCC) guidelines for national inventories. The GHG inventory included emissions from animals, feeds and operations for animal operation from “cradle to farm gate”. Emissions of each farm were converted to carbon dioxide equivalent (CO2eq) and divided by carcass production. Regression analysis between carbon dioxide equivalent and productive index was run to identify possible hotspot of GHG emissions. A large variation between farms were observed. The GHG yield ranged from 8.63 kg to 50.88 CO2eq kg carcass-1. The productive index age of slaughtering (P < 0.0001), average daily gain (P < 0.0001) and productivity (P = 0.058) per area were positive correlated to GHG yield. While no correlation was found with stocking rate (P = 0.21). Improvements of the production chain could be realized by accurate animal management strategies that reduce the age of slaughtering (feeding and genetic improvements) and gain individual or per area using strategic animal supplementation and pasture management, in order to obtains reduction of GHG emissions of beef cattle.


2021 ◽  
Vol 4 (1) ◽  
pp. e2021020
Author(s):  
Hassan Nima HABIB ◽  
Wessam Monther Mohammed SALEH ◽  
Qutaiba J. GHENI ◽  
Alfred S. KAROMY

2018 ◽  
Vol 96 (10) ◽  
pp. 4076-4086
Author(s):  
Justin W Buchanan ◽  
Michael D MacNeil ◽  
Randall C Raymond ◽  
Ashley R Nilles ◽  
Alison Louise Van Eenennaam

Sign in / Sign up

Export Citation Format

Share Document