A meso-level water use assessment in the Mediterranean agriculture. Multiple applications of water footprint for some traditional crops

2021 ◽  
pp. 129886
Author(s):  
Tiziana Crovella ◽  
Annarita Paiano ◽  
Giovanni Lagioia
2017 ◽  
Vol 1 (1) ◽  
pp. 11-25
Author(s):  
Mohammad Suhail

Every commodity or goods has intake of water i.e. either in processing or furnished stage. Thus, the present study propensities macro-level (states-level) water footprint (WFP) assessment of selected eight crops namely, Wheat, Barley, Maize, Millets, Rice, Sorghum, Soybeans and Tea. The aim of present research is to assess water use in selected crops at field level. In addition, the spatial evaluation at state level also considered as one of the significant objective to understand regional disparity and/or similarly. Methodology and approach of assessment was adopted from Water Footprint Assessment Manual (2011). Data was collected from state Agricultural Directorate, National Bureau of Soil Survey and landuse, published reports and online database such as FAOSTAT, WMO, WFN, and agriculture census. Results show that green component of WFP contributes large fraction as about 72 percent, while blue and grey component amounted of about 19 and 9 percent of the total water consumption, respectively. Moreover, spatial variability of blue, green and grey among the states assimilated by soil regime and climate barriers. Supply of blue water is high where the region imparted to semi-arid or arid land. Consequently, a balanced approach between green and blue water use has been recommended in the present study to address increasing water demand in the future.


Author(s):  
Natalia Mikosch ◽  
Markus Berger ◽  
Elena Huber ◽  
Matthias Finkbeiner

Abstract Purpose The water footprint (WF) method is widely applied to quantify water use along the life cycle of products and organizations and to evaluate the resulting impacts on human health. This study analyzes the cause-effect chains for the human health damage related to the water use on a local scale in the Province Punjab of Pakistan, evaluates their consistency with existing WF models, and provides recommendations for future model development. Method Locally occurring cause-effect chains are analyzed based on site observations in Punjab and a literature review. Then, existing WF models are compared to the findings in the study area including their comprehensiveness (covered cause-effect chains), relevance (contribution of the modeled cause-effect chain to the total health damage), and representativeness (correspondence with the local cause-effect chain). Finally, recommendations for the development of new characterization models describing the local cause-effect chains are provided. Results and discussion The cause-effect chains for the agricultural water deprivation include malnutrition due to reduced food availability and income loss as well as diseases resulting from the use of wastewater for irrigation, out of which only the first one is addressed by existing WF models. The cause-effect chain for the infectious diseases due to domestic water deprivation is associated primarily with the absence of water supply systems, while the linkage to the water consumption of a product system was not identified. The cause-effect chains related to the water pollution include the exposure via agricultural products, fish, and drinking water, all of which are reflected in existing impact assessment models. Including the groundwater compartment may increase the relevance of the model for the study area. Conclusions Most cause-effect chains identified on the local scale are consistent with existing WF models. Modeling currently missing cause-effect chains for the impacts related to the income loss and wastewater usage for irrigation can enhance the assessment of the human health damage in water footprinting.


2018 ◽  
Vol 58 (4) ◽  
pp. 695-708 ◽  
Author(s):  
Ya-Yen Sun ◽  
Ching-Mai Hsu

Tourism water consumption reflects the dynamics between the visitation volume, economic structure, and water use technology of a destination. This paper presents a structural decomposition analysis that attributes changes of Taiwan’s tourism water footprint into the demand factors of total consumption and purchasing patterns, and production factors of the industry input structure and water use technology. From 2006 to 2011, Taiwan experienced a 48% growth in visitor expenditures and a 74% surge in its water footprint. Diseconomies of scale were observed, with a 1% increase in consumption leading to a 1.5% increase in the tourism water footprint. A strong preference by visitors for water-intensive goods and services and a changing economic structure requiring more water input for tourism establishments and supply chain members contributed to this worrisome pattern. The water requirements received only a minimal offset effect with technological improvements. Decoupling tourism water consumption from economic output is currently unattainable.


2021 ◽  
Author(s):  
Marianela Fader ◽  
Carlo Giupponi ◽  
Selmin Burak ◽  
Hamouda Dakhlaoui ◽  
Aristeidis Koutroulis ◽  
...  

<p>The presentation will summarize the main findings of the chapter “Water”[1] of the report “Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future”. This report was published in November 2020 and prepared by 190 scientists from 25 countries, who belong to the scientific network “Mediterranean Experts on Climate and Environmental Change”.</p><p>Water resources in the Mediterranean are scarce, unevenly distributed and often mismatching human and environmental needs. Approx. 180 million people in the southern and eastern Mediterranean countries suffer from water scarcity (<1000 m<sup>3</sup> capita<sup>-1</sup> yr<sup>-1</sup>). The main water use is for agriculture, and more specifically on the southern and eastern rim. Water demand for both tourism and agriculture peak in summer, potentially enhancing conflicts in the future. Municipal water use is particularly constrained in the south and will likely be exacerbated in the future by demographic and migration phenomena. Northern countries face additional risks in flood prone areas where urban settlements are rapidly increasing.</p><p>Climate change, in combination with demographic and socio-economic developments, has mainly negative consequences for the water cycle in the Mediterranean Basin, including reduced runoff and groundwater recharge, increased crop water requirements, increased conflicts among users, and increased risk of overexploitation and degradation. These impacts will be particularly severe for global warming higher than 2°C.</p><p>Adequate water supply and demand management offers some options to cope with risks. Technical solutions are available for improving water use efficiency and productivity, and increasing reuse. Seawater desalination is increasingly used as adaptation measure to reduce (potable) water scarcity in dry Mediterranean countries, despite known drawbacks in terms of environmental impacts and energy requirements. Promising solar technologies are under development, potentially reducing emissions and costs. Reuse of wastewater is a solution for agriculture and industrial activities but also recharge of aquifers. Inter-basin transfers may lead to controversies and conflicts. Construction of dams contributes to the reduction of water and energy scarcities, but with trade-offs in terms of social and environmental impacts.</p><p>Overall, water demand management, which increases water use efficiency and reduces water losses, is crucial for water governance for a sustainable development. Maintaining Mediterranean diet or coming back to it on the basis of locally produced foods and reducing food wastes may save water but also carbon emissions while having nutritional and health benefits.</p><div><br><div> <p>[1] <strong>Fader M.</strong>, Giupponi C., Burak S., Dakhlaoui H., Koutroulis A., Lange M.A., Llasat M.C., Pulido-Velazquez D., Sanz-Cobeña A. (2020): Water. In: Climate and Environmental Change in the Mediterranean Basin – Current Situation and Risks for the Future. First Mediterranean Assessment Report [Cramer W, Guiot J, Marini K (eds.)] Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille, France, 57pp, in press. Download</p> </div> </div>


2018 ◽  
Vol 22 (5) ◽  
pp. 3007-3032 ◽  
Author(s):  
Richard R. Rushforth ◽  
Benjamin L. Ruddell

Abstract. This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale (county-level) federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the US Energy Information Administration (EIA), the US Department of Transportation (USDOT), the US Department of Energy (USDOE), and the US Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the US water footprint (F) and in the observed pattern of virtual water flows. Four virtual water accounting scenarios were developed with minimum (Min), median (Med), and maximum (Max) consumptive use scenarios and a withdrawal-based scenario. The median water footprint (FCUMed) of the US is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (FCUMed′) of the US is 589 m3 per capita (FWithdrawal′: 1298 m3 per capita; FCUMax′: 720 m3 per capita; FCUMin′: 198 m3 per capita). The US hydroeconomic network is centered on cities. Approximately 58 % of US water consumption is for direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total US blue water footprint, and is dominated by irrigated agriculture in the western US. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 to over 99 % depending on location. Harmonized region-specific, economic-sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2844
Author(s):  
Winnie Gerbens-Leenes ◽  
Santiago Vaca-Jiménez ◽  
Mesfin Mekonnen

This paper gives an overview of the contribution of water footprint (WF) studies on water for energy relationships. It first explains why water is needed for energy, gives an overview of important water energy studies until 2009, shows the contribution of Hoekstra’s work on WF of energy generation, and indicates how this contribution has supported new research. Finally, it provides knowledge gaps that are relevant for future studies. Energy source categories are: 1. biofuels from sugar, starch and oil crops; 2. cellulosic feedstocks; 3. biofuels from algae; 4. firewood; 5. hydropower and 6. various sources of energy including electricity, heat and transport fuels. Especially category 1, 3, 4, 5 and to a lesser extent 2 have relatively large WFs. This is because the energy source derives from agriculture or forestry, which has a large water use (1,2,4), or has large water use due to evaporation from open water surfaces (3,5). WFs for these categories can be calculated using the WF tool. Category 6 includes fossil fuels and renewables, such as photovoltaics and wind energy and has relatively small WFs. However, information needs to be derived from industry.


2018 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively managing agricultural water resources. The water footprint is a new index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the region-scale water footprint of crop production based on hydrological processes. This method analyzes the water-use process during the growth of crops, which includes irrigation, precipitation, underground water, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprints of wheat, corn and sunflower were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprints of wheat, sunflower and corn were 1380–2888 m3/t, 942–1774 m3/t, and 2095–4855 m3/t, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprint for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further from the irrigating gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


2015 ◽  
Vol 28 ◽  
pp. 73-80
Author(s):  
Mohan Bikram Shrestha ◽  
Udhab Raj Khadka

The water footprint is consumption-based indicator of water use. Water footprint is defined as the total volume of both indirect and the direct freshwater used for producing goods and services consumed by individuals or inhabitants of community. There are many studies regarding the direct water use but studies incorporating both direct and indirect water use is deficient. This study tries to estimate total volume of water based on the consumption pattern of different commodities by individuals of Kathmandu Metropolitan city using extended water footprint calculator. The average water footprint of individuals appears to be 1145.52 m3/yr. The indirect and direct water footprint appears to be 1070.82 Mm3/yr and 46.59 Mm3/yr respectively which cumulatively give the total water footprint of Kathmandu Metropolitan City of 1117.40 Mm3/yr. This volume is equal to 2.27 times the annual flow the River Bagmati. The indirect water footprint includes food water footprint of 1055.60 Mm3/yr or 2.14 times the annual flow and industrial water use of 15.22 Mm3/yr or 0.03 times the annual flow while the direct water footprint includes domestic water use of 46.59 Mm3/yr or 0.09 times the annual flow. In food water footprint, cereals consumption shared the highest contribution of 34.82% followed by meat consumption with share of 32.62% in total water footprint. Per capita per day water use of inhabitants appears to be 3138 liters which includes water use in food items of 2965 liters, industrial water use of 43 liters and domestic water use of 131 liters. The per capita per day domestic water use is 90 liters more than supplement of 41 liters by the water operator of Kathmandu Valley. Per capita per day domestic water use is already 5 liters more than expected improvement in water supplement of 126 liters per capita per day in 2025 after accomplishment of Melamchi water project. And, it is expected to increase further observing the rapid urbanization of Kathmandu Metropolitan City. The study showed water footprint of individuals is directly related to food consumption behavior, life style and services used therefore it is necessary to initiate water offsetting measures at individual level and water operator to find environmentally sustainable alternatives along with ongoing water project to fulfill demand. J. Nat. Hist. Mus. Vol. 28, 2014: 73-80


2018 ◽  
Vol 22 (10) ◽  
pp. 5111-5123 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively manage agricultural water resources. The water footprint is an improved index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the regional-scale water footprint of crop production based on hydrological processes, and the water footprint is quantified in terms of blue and green water. This method analyses the water-use process during the growth of crops, which includes irrigation, precipitation, groundwater, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprint of wheat, corn and sunflowers were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprint of wheat, corn and sunflowers were 1380–2888, 942–1774 and 2095–4855 m3 t−1, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprints for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further away from the irrigation gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


Sign in / Sign up

Export Citation Format

Share Document