Heteroatom-doped porous carbon nanoparticle-decorated carbon cloth (HPCN/CC) as efficient anode electrode for microbial fuel cells (MFCs)

2022 ◽  
pp. 130374
Author(s):  
Kaili Zhu ◽  
Shuangfei Wang ◽  
Hui Liu ◽  
Shijie Liu ◽  
Jian Zhang ◽  
...  
Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 381
Author(s):  
Xiaoye Xing ◽  
Zhongliang Liu ◽  
Wenwen Chen ◽  
Xiaoge Lou ◽  
Yanxia Li ◽  
...  

Dandelion seeds (DSs) have the advantages of high nitrogen content, low cost and easy availability and thus are ideal carbon precursors for fabricating carbon nanomaterials. Herein, this paper prepared a carbon nanosheet material by one-step carbonizing DSs with KOH activation (self-doped-nitrogen porous carbon nanosheets (N-CNS)) and without KOH activation (unactivated self-doped-nitrogen porous carbon nanosheets (N-UA-CNS)), which could dope nitrogen atoms directly into carbon materials without additional processes. Scanning electron microscopy(SEM) images and X-ray diffraction(XRD) patterns both showed that N-CNS was of macro-porous structure, and beneficial for microorganisms’ growth. The Brunauer Emmett Teller(BET) surface area of N-CNS was 2107.5 m2 g−1, which was much higher than that of N-UA-CNS. After carbon clothes were modified by the obtained materials, the internal resistance of both N-CNS-modified carbon cloth (N-CNS-CC) and N-UA-CNS-modified carbon cloth (N-UA-CNS-CC) was greatly reduced and was found to be only 2.7 Ω and 4.0 Ω, respectively which are all significantly smaller than that of blank carbon cloth (65.1 Ω). These electrodes were assembled in microbial fuel cells (MFCs) as anode, and the operation experiments showed that the N-CNS modification shortened start-up time, improved output stability and increased maximum output voltage significantly. The maximum power density of N-CNS-CC MFC was 1122.41 mW m−2 which was 1.3 times of that of N-UA-CNS-CC MFC and 1.6 times of that of CC MFC. The results demonstrated that N-CNS was an ideal modification material for fabricating MFC anodes with simple preparation process and low cost.


2021 ◽  
Vol 9 (12) ◽  
pp. 7726-7735
Author(s):  
Da Liu ◽  
Weicheng Huang ◽  
Qinghuan Chang ◽  
Lu Zhang ◽  
Ruiwen Wang ◽  
...  

TiN nanoarrays, in situ grown on carbon cloth gather 97.2% of the model exoelectrogen Geobacter, greatly enhancing the MFCs' performance. The experimental results and DFT calculation certify the importance of the micro–nano-hierarchical structure.


2015 ◽  
Vol 298 ◽  
pp. 177-183 ◽  
Author(s):  
Celal Erbay ◽  
Gang Yang ◽  
Paul de Figueiredo ◽  
Reza Sadr ◽  
Choongho Yu ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1803 ◽  
Author(s):  
Yuko Goto ◽  
Naoko Yoshida

Conventional aerobic treatment of swine wastewater, which generally contains 4500–8200 mg L−1 of organic matter, is energy-consuming. The aim of this study was to assess the application of scaled-up microbial fuel cells (MFCs) with different capacities (i.e., 1.5 L, 12 L, and 100 L) for removing organic matter from swine wastewater. The MFCs were single-chambered, consisting of an anode of microbially reduced graphene oxide (rGO) and an air-cathode of platinum-coated carbon cloth. The MFCs were polarized via an external resistance of 3–10 Ω for 40 days for the 1.5 L-MFC and 120 days for the 12L- and 100 L-MFC. The MFCs were operated in continuous flow mode (hydraulic retention time: 3–5 days). The 100 L-MFC achieved an average chemical oxygen demand (COD) removal efficiency of 52%, which corresponded to a COD removal rate of 530 mg L−1 d−1. Moreover, the 100 L-MFC showed an average and maximum electricity generation of 0.6 and 2.2 Wh m−3, respectively. Our findings suggest that MFCs can effectively be used for swine wastewater treatment coupled with the simultaneous generation of electricity.


2014 ◽  
Vol 39 (33) ◽  
pp. 19148-19155 ◽  
Author(s):  
Jun Zhang ◽  
Jun Li ◽  
Dingding Ye ◽  
Xun Zhu ◽  
Qiang Liao ◽  
...  

Author(s):  
Jie Yang ◽  
Sasan Ghobadian ◽  
Reza Montazami ◽  
Nastaran Hashemi

Microbial fuel cell (MFC) technology is a promising area in the field of renewable energy because of their capability to use the energy contained in wastewater, which has been previously an untapped source of power. Microscale MFCs are desirable for their small footprints, relatively high power density, fast start-up, and environmentally-friendly process. Microbial fuel cells employ microorganisms as the biocatalysts instead of metal catalysts, which are widely applied in conventional fuel cells. MFCs are capable of generating electricity as long as nutrition is provided. Miniature MFCs have faster power generation recovery than macroscale MFCs. Additionally, since power generation density is affected by the surface-to-volume ratio, miniature MFCs can facilitate higher power density. We have designed and fabricated a microscale microbial fuel cell with a volume of 4 μL in a polydimethylsiloxane (PDMS) chamber. The anode and cathode chambers were separated by a proton exchange membrane. Carbon cloth was used for both the anode and the cathode. Shewanella Oneidensis MR-1 was chosen to be the electrogenic bacteria and was inoculated into the anode chamber. We employed Ferricyanide as the catholyte and introduced it into the cathode chamber with a constant flow rate of approximately 50 μL/hr. We used trypticase soy broth as the bacterial nutrition and added it into the anode chamber approximately every 15 hours once current dropped to base current. Using our miniature MFC, we were able to generate a maximum current of 4.62 μA.


Sign in / Sign up

Export Citation Format

Share Document