Protein-RNA interaction guided chemical modification of Dicer substrate RNA nanostructures for superior in vivo gene silencing

Author(s):  
Bora Jang ◽  
Hyejin Jang ◽  
Hyunsook Kim ◽  
Minjeong Kim ◽  
Michaela Jeong ◽  
...  
2018 ◽  
Vol 24 (23) ◽  
pp. 2692-2700 ◽  
Author(s):  
H. Susana Marinho ◽  
Paulo Marcelino ◽  
Helena Soares ◽  
Maria Luísa Corvo

Background: Ischaemia-reperfusion injury (IRI), a major complication occurring during organ transplantation, involves an initial ischemia insult, due to loss of blood supply, followed by an inflammation-mediated reperfusion injury. A variety of molecular targets and pathways involved in liver IRI have been identified. Gene silencing through RNA interference (RNAi) by means of small interference RNA (siRNA) targeting mediators of IRI is a promising therapeutic approach. Objective: This study aims at reviewing the use of siRNAs as therapeutic agents to prevent IRI during liver transplantation. Method: We review the crucial choice of siRNA targets and the advantages and problems of the use of siRNAs. Results: We propose possible targets for siRNA therapy during liver IRI. Moreover, we discuss how drug delivery systems, namely liposomes, may improve siRNA therapy by increasing siRNA stability in vivo and avoiding siRNA off-target effects. Conclusion: siRNA therapeutic potential to preclude liver IRI can be improved by a better knowledge of what molecules to target and by using more efficient delivery strategies.


2012 ◽  
Vol 124 (34) ◽  
pp. 8657-8661 ◽  
Author(s):  
Muthusamy Jayaraman ◽  
Steven M. Ansell ◽  
Barbara L. Mui ◽  
Ying K. Tam ◽  
Jianxin Chen ◽  
...  

2014 ◽  
Vol 196 ◽  
pp. 355-362 ◽  
Author(s):  
Vikas Hegde ◽  
Robyn P. Hickerson ◽  
Sitheswaran Nainamalai ◽  
Paul A. Campbell ◽  
Frances J.D. Smith ◽  
...  

1986 ◽  
Vol 39 (3) ◽  
pp. 415-423 ◽  
Author(s):  
KIYOSHI SHIBATA ◽  
SADAYOSHI SATSUMABAYASHI ◽  
HIROSHI SANO ◽  
KANKI KOMIYAMA ◽  
AKIRA NAKAGAWA ◽  
...  

Development ◽  
1998 ◽  
Vol 125 (12) ◽  
pp. 2223-2234 ◽  
Author(s):  
B.Y. Lu ◽  
J. Ma ◽  
J.C. Eissenberg

The roles of differentiation, mitotic activity and intrinsic promoter strength in the maintenance of heterochromatic silencing were investigated during development using an inducible lacZ gene as an in vivo probe. Heterochromatic silencing is initiated at the onset of gastrulation, approximately 1 hour after heterochromatin is first visible cytologically. A high degree of silencing is maintained in the mitotically active imaginal cells from mid-embryogenesis until early third instar larval stage, and extensive relaxation of silencing is tightly associated with the onset of differentiation. Relaxation of silencing can be triggered in vitro by ecdysone. In contrast, timing and extent of silencing at both the initiation and relaxation stages are insensitive to changes in cell cycle activity, and intrinsic promoter strength also does not influence the extent of silencing by heterochromatin. These data suggest that the silencing activity of heterochromatin is developmentally programmed.


2008 ◽  
Vol 86 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Zachery R. Belak ◽  
Andrew Ficzycz ◽  
Nick Ovsenek

YY1 (Yin Yang 1) is present in the Xenopus oocyte cytoplasm as a constituent of messenger ribonucleoprotein complexes (mRNPs). Association of YY1 with mRNPs requires direct RNA-binding activity. Previously, we have shown YY1 has a high affinity for U-rich RNA; however, potential interactions with plausible in vivo targets have not been investigated. Here we report a biochemical characterization of the YY1–RNA interaction including an investigation of the stability, potential 5′-methylguanosine affinity, and specificity for target RNAs. The formation of YY1–RNA complexes in vitro was highly resistant to thermal, ionic, and detergent disruption. The endogenous oocyte YY1–mRNA interactions were also found to be highly stable. Specific YY1–RNA interactions were observed with selected mRNA and 5S RNA probes. The affinity of YY1 for these substrates was within an order of magnitude of that for its cognate DNA element. Experiments aimed at determining the potential role of the 7-methylguanosine cap on RNA-binding reveal no significant difference in the affinity of YY1 for capped or uncapped mRNA. Taken together, the results show that the YY1–RNA interaction is highly stable, and that YY1 possesses the ability to interact with structurally divergent RNA substrates. These data are the first to specifically document the interaction between YY1 and potential in vivo targets.


2013 ◽  
Vol 23 (28) ◽  
pp. 3488-3493 ◽  
Author(s):  
Seung Koo Lee ◽  
Ching-Hsuan Tung
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document