A hybrid anchored-ANOVA – POD/Kriging method for uncertainty quantification in unsteady high-fidelity CFD simulations

2016 ◽  
Vol 324 ◽  
pp. 137-173 ◽  
Author(s):  
Luca Margheri ◽  
Pierre Sagaut
2021 ◽  
Vol 4 (398) ◽  
pp. 15-23
Author(s):  
Zhang Qingshan ◽  
◽  
Chen Weimin ◽  
Du Yunlong ◽  
Dong Guoxiang ◽  
...  

A comparison between towing tank testing and full-scale CFD simulations is presented at three different target speeds. For the current self-propulsion simulation, the self-propulsion point was obtained using polynomial interpolation. The studies of boundary layer thickness, a basic grid uncertainty assessment and verification were performed to give some confidence of grid application to current self-propulsion simulation. All simulations are performed using a commercial CFD software STAR-CCM+. It is concluded that with high-fidelity numerical methods, it’s possible to treat hull roughness and directly calculate full-scale flow characteristics, including the effects of the free surface, none-linearity, turbulence and the interaction between propeller, hull and the flow field.


2021 ◽  
Author(s):  
Francesco Rizzi ◽  
Eric Parish ◽  
Patrick Blonigan ◽  
John Tencer

<p>This talk focuses on the application of projection-based reduced-order models (pROMs) to seismic elastic shear waves. Specifically, we present a method to efficiently propagate parametric uncertainties through the system using a novel formulation of the Galerkin ROM that exploits modern many-core computing nodes.</p><p>Seismic modeling and simulation is an active field of research because of its importance in understanding the generation, propagation and effects of earthquakes as well as artificial explosions. We stress two main challenges involved: (a) physical models contain a large number of parameters (e.g., anisotropic material properties, signal forms and parametrizations); and (b) simulating these systems at global scale with high-accuracy requires a large computational cost, often requiring days or weeks on a supercomputer. Advancements in computing platforms have enabled researchers to exploit high-fidelity computational models, such as highly-resolved seismic simulations, for certain types of analyses. Unfortunately, for analyses requiring many evaluations of the forward model (e.g., uncertainty quantification, engineering design), the use of high-fidelity models often remains impractical due to their high computational cost. Consequently, analysts often rely on lower-cost, lower-fidelity surrogate models for such problems.</p><p>Broadly speaking, surrogate models fall under three categories, namely (a) data fits, which construct an explicit mapping (e.g., using polynomials, Gaussian processes) from the system's parameters to the system response of interest, (b) lower-fidelity models, which simplify the high-fidelity model (e.g., by coarsening the mesh, employing a lower finite-element order, or neglecting physics), and (c) pROMs which reduce the number of degrees of freedom in the high-fidelity model by a projection process of the full-order model onto a subspace identified from high-fidelity data. The main advantage of pROMs is that they apply a projection process directly to the equations governing the high-fidelity model, thus enabling stronger guarantees (e.g., of structure preservation or of accuracy) and more accurate a posteriori error bounds.</p><p>State-of-the-art Galerkin ROM formulations express the state as a rank-1 tensor (i.e., a vector), leading to computational kernels that are memory bandwidth bound and, therefore, ill-suited for scalable performance on modern many-core and hybrid computing nodes. In this work, we introduce a reformulation, called rank-2 Galerkin, of the Galerkin ROM for linear time-invariant (LTI) dynamical systems which converts the nature of the ROM problem from memory bandwidth to compute bound, and apply it to elastic seismic shear waves in an axisymmetric domain. Specifically, we present an end-to-end demonstration of using the rank-2 Galerkin ROM in a Monte Carlo sampling study, showing that the rank-2 Galerkin ROM is 970 times more efficient than the full order model, while maintaining excellent accuracy in both the mean and statistics of the field.</p>


2020 ◽  
Vol 105 (3) ◽  
pp. 699-713 ◽  
Author(s):  
Hadrien Calmet ◽  
Daniel Pastrana ◽  
Oriol Lehmkuhl ◽  
Takahisa Yamamoto ◽  
Yoshiki Kobayashi ◽  
...  

Author(s):  
Paul Tucker ◽  
Suresh Menon ◽  
Charles Merkle ◽  
Joseph Oefelein ◽  
Vigor Yang

2021 ◽  
Vol 2 (1) ◽  
pp. 44-56
Author(s):  
Maria Avramova ◽  
Agustin Abarca ◽  
Jason Hou ◽  
Kostadin Ivanov

This paper provides a review of current and upcoming innovations in development, validation, and uncertainty quantification of nuclear reactor multi-physics simulation methods. Multi-physics modelling and simulations (M&S) provide more accurate and realistic predictions of the nuclear reactors behavior including local safety parameters. Multi-physics M&S tools can be subdivided in two groups: traditional multi-physics M&S on assembly/channel spatial scale (currently used in industry and regulation), and novel high-fidelity multi-physics M&S on pin (sub-pin)/sub-channel spatial scale. The current trends in reactor design and safety analysis are towards further development, verification, and validation of multi-physics multi-scale M&S combined with uncertainty quantification and propagation. Approaches currently applied for validation of the traditional multi-physics M&S are summarized and illustrated using established Nuclear Energy Agency/Organization for Economic Cooperation and Development (NEA/OECD) multi-physics benchmarks. Novel high-fidelity multi-physics M&S allow for insights crucial to resolve industry challenge and high impact problems previously impossible with the traditional tools. Challenges in validation of novel multi-physics M&S are discussed along with the needs for developing validation benchmarks based on experimental data. Due to their complexity, the novel multi-physics codes are still computationally expensive for routine applications. This fact motivates the use of high-fidelity novel models and codes to inform the low-fidelity traditional models and codes, leading to improved traditional multi-physics M&S. The uncertainty quantification and propagation across different scales (multi-scale) and multi-physics phenomena are demonstrated using the OECD/NEA Light Water Reactor Uncertainty Analysis in Modelling benchmark framework. Finally, the increasing role of data science and analytics techniques in development and validation of multi-physics M&S is summarized.


Author(s):  
Matteo Diez ◽  
Riccardo Broglia ◽  
Danilo Durante ◽  
Angelo Olivieri ◽  
Emilio Campana ◽  
...  

Author(s):  
Christopher Doyle ◽  
William Dempster ◽  
Steven Taggart

Abstract In this paper, the validity of the commonly used quasi-steady design approach to pressure relief valves (PRV) is examined by comparing detailed steady state conditions of valve behavior directly with transient conditions. To achieve this, a PRV conforming to ASME VIII standards was modelled using the commercial computational fluid dynamics (CFD) package ANSYS FLUENT to account for transient fluid-structure interaction processes. Detailed steady state CFD simulations were conducted using quasi-steady assumptions and compared to high fidelity transient moving mesh simulations to allow the piston forces to be examined. The results indicated that noticeably different magnitudes can occur between steady state and transient simulations; highlighting the possibility of significant differences occurring between quasi steady designed valves and their ultimate performance. In this paper, a single operating condition is examined, using air at 10.3 barg, for a 5231BX refrigeration valve supplied by the Henry Group to highlight the main issues. Analysis has indicated that the differences in performance are generated by temporal, short lived vortices at the piston surface which influences the bulk flow features as the disc accelerates and decelerates; altering the net disc forces when compared to steady state conditions.


Sign in / Sign up

Export Citation Format

Share Document