Enabling efficient uncertainty quantification for seismic modeling via projection-based model reduction

Author(s):  
Francesco Rizzi ◽  
Eric Parish ◽  
Patrick Blonigan ◽  
John Tencer

<p>This talk focuses on the application of projection-based reduced-order models (pROMs) to seismic elastic shear waves. Specifically, we present a method to efficiently propagate parametric uncertainties through the system using a novel formulation of the Galerkin ROM that exploits modern many-core computing nodes.</p><p>Seismic modeling and simulation is an active field of research because of its importance in understanding the generation, propagation and effects of earthquakes as well as artificial explosions. We stress two main challenges involved: (a) physical models contain a large number of parameters (e.g., anisotropic material properties, signal forms and parametrizations); and (b) simulating these systems at global scale with high-accuracy requires a large computational cost, often requiring days or weeks on a supercomputer. Advancements in computing platforms have enabled researchers to exploit high-fidelity computational models, such as highly-resolved seismic simulations, for certain types of analyses. Unfortunately, for analyses requiring many evaluations of the forward model (e.g., uncertainty quantification, engineering design), the use of high-fidelity models often remains impractical due to their high computational cost. Consequently, analysts often rely on lower-cost, lower-fidelity surrogate models for such problems.</p><p>Broadly speaking, surrogate models fall under three categories, namely (a) data fits, which construct an explicit mapping (e.g., using polynomials, Gaussian processes) from the system's parameters to the system response of interest, (b) lower-fidelity models, which simplify the high-fidelity model (e.g., by coarsening the mesh, employing a lower finite-element order, or neglecting physics), and (c) pROMs which reduce the number of degrees of freedom in the high-fidelity model by a projection process of the full-order model onto a subspace identified from high-fidelity data. The main advantage of pROMs is that they apply a projection process directly to the equations governing the high-fidelity model, thus enabling stronger guarantees (e.g., of structure preservation or of accuracy) and more accurate a posteriori error bounds.</p><p>State-of-the-art Galerkin ROM formulations express the state as a rank-1 tensor (i.e., a vector), leading to computational kernels that are memory bandwidth bound and, therefore, ill-suited for scalable performance on modern many-core and hybrid computing nodes. In this work, we introduce a reformulation, called rank-2 Galerkin, of the Galerkin ROM for linear time-invariant (LTI) dynamical systems which converts the nature of the ROM problem from memory bandwidth to compute bound, and apply it to elastic seismic shear waves in an axisymmetric domain. Specifically, we present an end-to-end demonstration of using the rank-2 Galerkin ROM in a Monte Carlo sampling study, showing that the rank-2 Galerkin ROM is 970 times more efficient than the full order model, while maintaining excellent accuracy in both the mean and statistics of the field.</p>

Author(s):  
Marco Baldan ◽  
Alexander Nikanorov ◽  
Bernard Nacke

Purpose Reliable modeling of induction hardening requires a multi-physical approach, which makes it time-consuming. In designing an induction hardening system, combining such model with an optimization technique allows managing a high number of design variables. However, this could lead to a tremendous overall computational cost. This paper aims to reduce the computational time of an optimal design problem by making use of multi-fidelity modeling and parallel computing. Design/methodology/approach In the multi-fidelity framework, the “high-fidelity” model couples the electromagnetic, thermal and metallurgical fields. It predicts the phase transformations during both the heating and cooling stages. The “low-fidelity” model is instead limited to the heating step. Its inaccuracy is counterbalanced by its cheapness, which makes it suitable for exploring the design space in optimization. Then, the use of co-Kriging allows merging information from different fidelity models and predicting good design candidates. Field evaluations of both models occur in parallel. Findings In the design of an induction heating system, the synergy between the “high-fidelity” and “low-fidelity” model, together with use of surrogates and parallel computing could reduce up to one order of magnitude the overall computational cost. Practical implications On one hand, multi-physical modeling of induction hardening implies a better understanding of the process, resulting in further potential process improvements. On the other hand, the optimization technique could be applied to many other computationally intensive real-life problems. Originality/value This paper highlights how parallel multi-fidelity optimization could be used in designing an induction hardening system.


Author(s):  
Matthew A. Williams ◽  
Andrew G. Alleyne

In the early stages of control system development, designers often require multiple iterations for purposes of validating control designs in simulation. This has the potential to make high fidelity models undesirable due to increased computational complexity and time required for simulation. As a solution, lower fidelity or simplified models are used for initial designs before controllers are tested on higher fidelity models. In the event that unmodeled dynamics cause the controller to fail when applied on a higher fidelity model, an iterative approach involving designing and validating a controller’s performance may be required. In this paper, a switched-fidelity modeling formulation for closed loop dynamical systems is proposed to reduce computational effort while maintaining elevated accuracy levels of system outputs and control inputs. The effects on computational effort and accuracy are investigated by applying the formulation to a traditional vapor compression system with high and low fidelity models of the evaporator and condenser. This sample case showed the ability of the switched fidelity framework to closely match the outputs and inputs of the high fidelity model while decreasing computational cost by 32% from the high fidelity model. For contrast, the low fidelity model decreases computational cost by 48% relative to the high fidelity model.


Author(s):  
Kai Zhou ◽  
Pei Cao ◽  
Jiong Tang

Uncertainty quantification is an important aspect in structural dynamic analysis. Since practical structures are complex and oftentimes need to be characterized by large-scale finite element models, component mode synthesis (CMS) method is widely adopted for order-reduced modeling. Even with the model order-reduction, the computational cost for uncertainty quantification can still be prohibitive. In this research, we utilize a two-level Gaussian process emulation to achieve rapid sampling and response prediction under uncertainty, in which the low- and high-fidelity data extracted from CMS and full-scale finite element model are incorporated in an integral manner. The possible bias of low-fidelity data is then corrected through high-fidelity data. For the purpose of reducing the emulation runs, we further employ Bayesian inference approach to calibrate the order-reduced model in a probabilistic manner conditioned on multiple predicted response distributions of concern. Case studies are carried out to validate the effectiveness of proposed methodology.


Author(s):  
Ken Nahshon ◽  
Nicholas Reynolds ◽  
Michael D. Shields

Uncertainty quantification (UQ) and propagation are critical to the computational assessment of structural components and systems. In this work, we discuss the practical challenges of implementing uncertainty quantification for high-dimensional computational structural investigations, specifically identifying four major challenges: (1) Computational cost; (2) Integration of engineering expertise; (3) Quantification of epistemic and model-form uncertainties; and (4) Need for V&V, standards, and automation. To address these challenges, we propose an approach that is straightforward for analysts to implement, mathematically rigorous, exploits analysts' subject matter expertise, and is readily automated. The proposed approach utilizes the Latinized partially stratified sampling (LPSS) method to conduct small sample Monte Carlo simulations. A simplified model is employed and analyst expertise is leveraged to cheaply investigate the best LPSS design for the structural model. Convergence results from the simplified model are then used to design an efficient LPSS-based uncertainty study for the high-fidelity computational model investigation. The methodology is carried out to investigate the buckling strength of a typical marine stiffened plate structure with material variability and geometric imperfections.


Author(s):  
Alireza Doostan ◽  
Gianluca Geraci ◽  
Gianluca Iaccarino

This paper presents a bi-fidelity simulation approach to quantify the effect of uncertainty in the thermal boundary condition on the heat transfer in a ribbed channel. A numerical test case is designed where a random heat flux at the wall of a rectangular channel is applied to mimic the unknown temperature distribution in a realistic application. To predict the temperature distribution and the associated uncertainty over the channel wall, the fluid flow is simulated using 2D periodic steady Reynolds-Averaged Navier-Stokes (RANS) equations. The goal of this study is then to illustrate that the cost of propagating the heat flux uncertainty may be significantly reduced when two RANS models with different levels of fidelity, one low (cheap to simulate) and one high (expensive to evaluate), are used. The low-fidelity model is employed to learn a reduced basis and an interpolation rule that can be used, along with a small number of high-fidelity model evaluations, to approximate the high-fidelity solution at arbitrary samples of heat flux. Here, the low- and high-fidelity models are, respectively, the one-equation Spalart-Allmaras and the two-equation shear stress transport k–ω models. To further reduce the computational cost, the Spalart-Allmaras model is simulated on a coarser spatial grid and the non-linear solver is terminated prior to the solution convergence. It is illustrated that the proposed bi-fidelity strategy accurately approximates the target high-fidelity solution at randomly selected samples of the uncertain heat flux.


Author(s):  
David J. J. Toal

Traditional multi-fidelity surrogate models require that the output of the low fidelity model be reasonably well correlated with the high fidelity model and will only predict scalar responses. The following paper explores the potential of a novel multi-fidelity surrogate modelling scheme employing Gappy Proper Orthogonal Decomposition (G-POD) which is demonstrated to accurately predict the response of the entire computational domain thus improving optimization and uncertainty quantification performance over both traditional single and multi-fidelity surrogate modelling schemes.


2011 ◽  
Vol 201-203 ◽  
pp. 1209-1212 ◽  
Author(s):  
Liang Yu Zhao ◽  
Xia Qing Zhang

A practical flapping wing micro aerial vehicle should have ability to withstand stochastic deviations of flight velocities. The responses of the time-averaged thrust coefficient and the propulsive efficiency with respect to a stochastic flight velocity deviation under Gauss distribution were numerically investigated using a classic Monte Carlo method. The response surface method was employed to surrogate the high fidelity model to save computational cost. It is observed that both of the time-averaged thrust coefficient and the propulsive efficiency obey a Gauss-like but not the exact Gauss distribution. The effect caused by the velocity deviation on the time-averaged thrust coefficient is larger than the one on the propulsive efficiency.


2020 ◽  
Vol 4 ◽  
pp. 274-284
Author(s):  
Mauro Righi ◽  
Vassilios Pachidis ◽  
László Könözsy ◽  
Fanzhou Zhao ◽  
Mehdi Vahdati

Surge in modern aero-engines can lead to violent disruption of the flow, damage to the blade structures and eventually engine shutdown. Knowledge of unsteady performance and loading during surge is crucial for compressor design, however, the understanding and prediction capability for this phenomenon is still very limited. While useful for the investigation of specific cases, costly experimental tests and high-fidelity CFD simulations cannot be used routinely in the design process of compressor systems. There is therefore an interest in developing a low-order model which can predict compressor performance during surge with sufficient accuracy at significantly reduced computational cost. This paper describes the validation of an unsteady 3D through-flow code developed at Cranfield University for the low-order modelling of surge in axial compressors. The geometry investigated is an 8-stage rig representative of a modern aero-engine IP compressor. Two deep surge events are modelled at part speed and full speed respectively. The results are compared against high-fidelity, full annulus, URANS simulations conducted at Imperial College. Comparison of massflow, pressure and temperature time histories shows a close match between the low-order and the higher-fidelity methods. The low-order model is shown capable of predicting many transient flow features which were observed in the high-fidelity simulations, while reducing the computational cost by up to two orders of magnitude.


Author(s):  
Hongyi Xu ◽  
Zhao Liu

Variance and sensitivity analysis are challenging tasks when the evaluation of system performances incurs a high-computational cost. To resolve this issue, this paper investigates several multifidelity statistical estimators for the responses of complex systems, especially the mesostructure–structure system manufactured by additive manufacturing. First, this paper reviews an established control variate multifidelity estimator, which leverages the output of an inexpensive, low-fidelity model and the correlation between the high-fidelity model and the low-fidelity model to predict the statistics of the system responses. Second, we investigate several variants of the original estimator and propose a new formulation of the control variate estimator. All these estimators and the associated sensitivity analysis approaches are compared on two engineering examples of mesostructure–structure system analysis. A multifidelity metamodel-based sensitivity analysis approach is also included in the comparative study. The proposed estimator demonstrates its strength in predicting variance when only a limited number of expensive high-fidelity data are available. Finally, the pros and cons of each estimator are discussed, and recommendations are made on the selection of multifidelity estimators for variance and sensitivity analysis.


2020 ◽  
Author(s):  
Ali Raza ◽  
Arni Sturluson ◽  
Cory Simon ◽  
Xiaoli Fern

Virtual screenings can accelerate and reduce the cost of discovering metal-organic frameworks (MOFs) for their applications in gas storage, separation, and sensing. In molecular simulations of gas adsorption/diffusion in MOFs, the adsorbate-MOF electrostatic interaction is typically modeled by placing partial point charges on the atoms of the MOF. For the virtual screening of large libraries of MOFs, it is critical to develop computationally inexpensive methods to assign atomic partial charges to MOFs that accurately reproduce the electrostatic potential in their pores. Herein, we design and train a message passing neural network (MPNN) to predict the atomic partial charges on MOFs under a charge neutral constraint. A set of ca. 2,250 MOFs labeled with high-fidelity partial charges, derived from periodic electronic structure calculations, serves as training examples. In an end-to-end manner, from charge-labeled crystal graphs representing MOFs, our MPNN machine-learns features of the local bonding environments of the atoms and learns to predict partial atomic charges from these features. Our trained MPNN assigns high-fidelity partial point charges to MOFs with orders of magnitude lower computational cost than electronic structure calculations. To enhance the accuracy of virtual screenings of large libraries of MOFs for their adsorption-based applications, we make our trained MPNN model and MPNN-charge-assigned computation-ready, experimental MOF structures publicly available.<br>


Sign in / Sign up

Export Citation Format

Share Document