scholarly journals Euler-Lagrange modelling of dilute particle-laden flows with arbitrary particle-size to mesh-spacing ratio

2020 ◽  
Vol 8 ◽  
pp. 100078
Author(s):  
Fabien Evrard ◽  
Fabian Denner ◽  
Berend van Wachem
1989 ◽  
Vol 207 ◽  
pp. 191-229 ◽  
Author(s):  
S. Veeravalli ◽  
Z. Warhaft

The interaction of two energy-containing turbulence scales is studied in the absence of mean shear. The flow, a turbulence mixing layer, is formed in decaying grid turbulence in which there are two distinct scales, one on either side of the stream. This is achieved using a composite grid with a larger mesh spacing on one side of the grid than the other. The solidity of the grid, and thus the mean velocity, is kept constant across the entire flow. Since there is no mean shear there is no turbulence production and thus spreading is caused solely by the fluctuating pressure and velocity fields. Two different types of grids were used: a parallel bar grid and a perforated plate. The mesh spacing ratio was varied from 3.3:1 to 8.9:1 for the bar grid, producing a turbulence lengthscale ratio of 2.4:1 and 4.3:1 for two different experiments. For the perforated plate the mesh ratio was 3:1 producing a turbulence lengthscale ratio of 2.2:1. Cross-stream profiles of the velocity variance and spectra indicate that for the large lengthscale ratio (4.3:1) experiment, a single scale dominates the flow while for the smaller lengthscale ratio experiments, the energetics are controlled by both lengthscales on either side of the flow. In all cases the mixing layer is strongly intermittent and the transverse velocity fluctuations have large skewness. The downstream data of the second, third and fourth moments for all experiments collapse well using a single composite lengthscale. The component turbulent energy budgets show the importance of the triple moment transport and pressure terms within the layer and the dominance of advection and dissipation on the outer edge. It is also shown that the bar grids tend toward self-similarity with downstream distance. The perforated plate could not be measured to the same downstream extent and did not reach self-similarity within its measurement range. In other respects the two types of grids yielded qualitatively similar results. Finally, we emphasize the distinction between intermittent turbulent penetration and turbulent diffusion and show that both play an important role in the spreading of the mixing layer.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Wear ◽  
2020 ◽  
pp. 203579
Author(s):  
G. Haider ◽  
M. Othayq ◽  
J. Zhang ◽  
R.E. Vieira ◽  
S.A. Shirazi

Sign in / Sign up

Export Citation Format

Share Document