scholarly journals Development of a high temperature material model for grade s275jr steel

2017 ◽  
Vol 137 ◽  
pp. 161-168 ◽  
Author(s):  
Neno Torić ◽  
Josip Brnić ◽  
Ivica Boko ◽  
Marino Brčić ◽  
Ian W. Burgess ◽  
...  
Author(s):  
Aditya Deshpande ◽  
Sean B. Leen ◽  
Thomas H. Hyde

This paper describes high temperature cyclic and creep relaxation testing and modelling of a high nickel-chromium material (XN40F) for application to the life prediction of superplastic forming (SPF) tools. An experimental test programme to characterise the high temperature cyclic elastic-plastic-creep behaviour of the material over a range of temperatures between 20°C and 900°C is described. The objective of the material testing is the development of a high temperature material model for cyclic analyses and life prediction of superplastic forming (SPF) dies for SPF of titanium aerospace components. A two-layer visco-plasticity model which combines both creep and combined isotropic-kinematic plasticity is chosen to represent the material behaviour. The process of material constant identification for this model is presented and the predicted results are compared with the rate-dependent (isothermal) experimental results. The temperature-dependent material model is furthermore applied to simulative thermo-mechanical fatigue (TMF) tests, designed to represent the temperature and stress-strain cycling associated with the most damaging phase of the die cycle. The model is shown to give good correlation with the test data, thus vindicating future application of the material model in thermo-mechanical analyses of SPF dies, for distortion and life prediction.


Author(s):  
Sean B. Leen ◽  
Aditya Deshpande ◽  
Thomas H. Hyde

This paper describes high temperature cyclic and creep relaxation testing and modeling of a high nickel-chromium material (XN40F) for application to the life prediction of superplastic forming (SPF) tools. An experimental test program to characterize the high temperature cyclic elastic-plastic-creep behavior of the material over a range of temperatures between 20°C and 900°C is described. The objective of the material testing is the development of a high temperature material model for cyclic analyses and life prediction of SPF dies for SPF of titanium aerospace components. A two-layer viscoplasticity model, which combines both creep and combined isotropic-kinematic plasticity, is chosen to represent the material behavior. The process of material constant identification for this model is presented, and the predicted results are compared with the rate-dependent (isothermal) experimental results. The temperature-dependent material model is furthermore applied to simulative thermomechanical fatigue tests, designed to represent the temperature and stress-strain cycling associated with the most damaging phase of the die cycle. The model is shown to give good correlation with the test data, thus vindicating future application of the material model in thermomechanical analyses of SPF dies for distortion and life prediction.


2018 ◽  
Vol 30 ◽  
pp. 1-7 ◽  
Author(s):  
Fatih Hayati Çakır ◽  
Mehmet Alper Sofuoğlu ◽  
Selim Gürgen

Nickel-based alloys provide high corrosion resistance and high-temperature strength but these alloys possess poor machinability. Hastelloy-X is a nickel based alloy that has been used for high temperature use. There are many studies about finite element modeling of aerospace alloys but studies in literature with Hastelloy-X are limited. In the present work, machining characteristics of Hastelloy-X were investigated and a numerical model was developed for the turning operation of Hastelloy-X. Two input parameters (cutting speed and feed rate) were variated in the operations and the results were evaluated considering process outputs such as cutting forces, cutting temperature, effective stresses and chip morphology. Based on the verification of the numerical model using experimental results, presented material model is appropriate for the turning operation of Hastelloy-X at low and medium cutting speed machining conditions.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Richard A. Barrett ◽  
Eimear M. O'Hara ◽  
Padraic E. O'Donoghue ◽  
Sean B. Leen

This paper presents the high-temperature low-cycle fatigue (HTLCF) behavior of a precipitate strengthened 9Cr martensitic steel, MarBN, designed to provide enhanced creep strength and precipitate stability at high temperature. The strain-controlled test program addresses the cyclic effects of strain-rate and strain-range at 600 °C, as well as tensile stress-relaxation response. A recently developed unified cyclic viscoplastic material model is implemented to characterize the complex cyclic and relaxation plasticity response, including cyclic softening and kinematic hardening effects. The measured response is compared to that of P91 steel, a current power plant material, and shows enhanced cyclic strength relative to P91.


Sign in / Sign up

Export Citation Format

Share Document