Combination of Endothelial Progenitor Cells, Extracellular Matrix and Aligned Eletrospun Polyhydroxyalkanoate Scaffold for Vascular Tissue Engineering

Cytotherapy ◽  
2016 ◽  
Vol 18 (6) ◽  
pp. S75 ◽  
Author(s):  
C. Yao
2014 ◽  
Vol 1 (1-4) ◽  
pp. 10-16 ◽  

Vascular tissue engineering attempts to grow blood vessels through the use of different scaffolds that allows vascular cells such as endothelial cells to form networks and organized in vascular tissue. Various biomaterials are used to produce scaffolds that allow growth and differentiation of stem cells; depending on the cell type and applications some materials are more suitable than other. The aim of this study was to evaluate the cytocompatibility of collagen based scaffolds and to assess the capacity of endothelial progenitor cells (EPC) isolated from human umbilical cord to form vascular networks on these scaffolds. Our results show that after 5 days in culture with collagen scaffolds, the EPC remained viable, a sign of biocompatibility with the 3D scaffolds. Scanning electron microscopy showed that in the collagen scaffolds EPC organize within networks and presents an abundant extracellular matrix that strengthen the links between them. When EPC were cultured on collagenchitosan scaffolds, they are more adherent to the scaffolds compared with collagen, exibiting a good capacity to form networks. This study shows that the collagen and collagen-chitosan scaffolds are not cytotoxic for EPC and they provide the possibility of being used in vascular tissue engineering to help creating blood vessels.


2021 ◽  
pp. 2100324
Author(s):  
Chungwon Park ◽  
Kwang‐Sook Park ◽  
Mi Jin Jeong ◽  
Han Byul Kim ◽  
Inho Bae ◽  
...  

2019 ◽  
Vol 7 (16) ◽  
pp. 2703-2713 ◽  
Author(s):  
Na Li ◽  
Alex P. Rickel ◽  
Hanna J. Sanyour ◽  
Zhongkui Hong

Stem cell differentiation on a decellularized native blood vessel scaffold under mechanical stimulation for vascular tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document