Three-dimensional hydrogel culture conditions promote the differentiation of human induced pluripotent stem cells into hepatocytes

Cytotherapy ◽  
2018 ◽  
Vol 20 (1) ◽  
pp. 95-107 ◽  
Author(s):  
Ying Luo ◽  
Cheng Lou ◽  
Sui Zhang ◽  
Zhengyan Zhu ◽  
Qianzhe Xing ◽  
...  
2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


2019 ◽  
Vol 10 ◽  
pp. 127-133 ◽  
Author(s):  
Takahito Minami ◽  
Takamichi Ishii ◽  
Kentaro Yasuchika ◽  
Ken Fukumitsu ◽  
Satoshi Ogiso ◽  
...  

2019 ◽  
Vol 93 (9) ◽  
Author(s):  
Leonardo D’Aiuto ◽  
David C. Bloom ◽  
Jennifer N. Naciri ◽  
Adam Smith ◽  
Terri G. Edwards ◽  
...  

ABSTRACTHerpes simplex virus 1 (HSV-1) establishes latency in both peripheral nerve ganglia and the central nervous system (CNS). The outcomes of acute and latent infections in these different anatomic sites appear to be distinct. It is becoming clear that many of the existing culture models using animal primary neurons to investigate HSV-1 infection of the CNS are limited and not ideal, and most do not recapitulate features of CNS neurons. Human induced pluripotent stem cells (hiPSCs) and neurons derived from them are documented as tools to study aspects of neuropathogenesis, but few have focused on modeling infections of the CNS. Here, we characterize functional two-dimensional (2D) CNS-like neuron cultures and three-dimensional (3D) brain organoids made from hiPSCs to model HSV-1–human–CNS interactions. Our results show that (i) hiPSC-derived CNS neurons are permissive for HSV-1 infection; (ii) a quiescent state exhibiting key landmarks of HSV-1 latency described in animal models can be established in hiPSC-derived CNS neurons; (iii) the complex laminar structure of the organoids can be efficiently infected with HSV, with virus being transported from the periphery to the central layers of the organoid; and (iv) the organoids support reactivation of HSV-1, albeit less efficiently than 2D cultures. Collectively, our results indicate that hiPSC-derived neuronal platforms, especially 3D organoids, offer an extraordinary opportunity for modeling the interaction of HSV-1 with the complex cellular and architectural structure of the human CNS.IMPORTANCEThis study employed human induced pluripotent stem cells (hiPSCs) to model acute and latent HSV-1 infections in two-dimensional (2D) and three-dimensional (3D) CNS neuronal cultures. We successfully established acute HSV-1 infections and infections showing features of latency. HSV-1 infection of the 3D organoids was able to spread from the outer surface of the organoid and was transported to the interior lamina, providing a model to study HSV-1 trafficking through complex neuronal tissue structures. HSV-1 could be reactivated in both culture systems; though, in contrast to 2D cultures, it appeared to be more difficult to reactivate HSV-1 in 3D cultures, potentially paralleling the low efficiency of HSV-1 reactivation in the CNS of animal models. The reactivation events were accompanied by dramatic neuronal morphological changes and cell-cell fusion. Together, our results provide substantive evidence of the suitability of hiPSC-based neuronal platforms to model HSV-1–CNS interactions in a human context.


AIDS ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 1127-1139
Author(s):  
Lin Ye ◽  
Jiaming Wang ◽  
Fernando Teque ◽  
Fei Xie ◽  
Yuting Tan ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e97397 ◽  
Author(s):  
Yoshikazu Kishino ◽  
Tomohisa Seki ◽  
Jun Fujita ◽  
Shinsuke Yuasa ◽  
Shugo Tohyama ◽  
...  

2016 ◽  
Vol 5 (1) ◽  
pp. 235-248 ◽  
Author(s):  
Nora Freyer ◽  
Fanny Knöspel ◽  
Nadja Strahl ◽  
Leila Amini ◽  
Petra Schrade ◽  
...  

2015 ◽  
Vol 11 (3) ◽  
pp. 926-935 ◽  
Author(s):  
Hyoe Komae ◽  
Hidekazu Sekine ◽  
Izumi Dobashi ◽  
Katsuhisa Matsuura ◽  
Minoru Ono ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94231 ◽  
Author(s):  
Jens Durruthy-Durruthy ◽  
Sharon F. Briggs ◽  
Jason Awe ◽  
Cyril Y. Ramathal ◽  
Saravanan Karumbayaram ◽  
...  

2020 ◽  
Author(s):  
Johanna Geuder ◽  
Mari Ohnuki ◽  
Lucas E. Wange ◽  
Aleksandar Janjic ◽  
Johannes W. Bagnoli ◽  
...  

SummaryComparing the molecular and cellular properties among primates is crucial to better understand human evolution and biology. However, it is difficult or ethically even impossible to collect matched tissues from many primates, especially during development. An alternative is to model different cell types and their development using induced pluripotent stem cells (iPSCs). These can be generated from many tissue sources, but non-invasive sampling would decisively broaden the spectrum of non-human primates that can be investigated. Here, we report the generation of primate iPSCs from urine samples. We first validate and optimize the procedure using human urine samples and show that Sendai virus transduction of reprogramming factors into urinary cells efficiently generates integration-free iPSCs, which maintain their pluripotency under feeder-free culture conditions. We demonstrate that this method is also applicable to gorilla and orangutan urinary cells isolated from a non-sterile zoo floor. We characterize the urinary cells, iPSCs and derived neural progenitor cells using karyotyping, immunohistochemistry, differentiation assays and RNA-sequencing. We show that the urine-derived human iPSCs are indistinguishable from well characterized PBMC-derived human iPSCs and that the gorilla and orangutan iPSCs are well comparable to the human iPSCs. In summary, this study introduces a novel and efficient approach to generate iPSCs non-invasively from primate urine. This will allow to extend the zoo of species available for a comparative approach to molecular and cellular phenotypes.Graphical AbstractWorkflow overview for establishing iPSCs from primate urine(A) We established the protocol for human urine based on a previous description (Zhou 2012). We tested volume, storage and culture conditions for primary cells and compared reprogramming by overexpression of OCT3/4, SOX2, KLF4 and MYC (OSKM) via lipofection of episomal vectors and via transduction of a sendai virus derived vector (SeV). (B) We used the the protocol established in humans and adapted it for unsterile floor-collected samples from non-human primates by adding Normocure to the first passages of primary cell culture and reprogrammed visually healthy and uncontaminated cultures using SeV. (C) Pluripotency of established cultures was verified by marker expression, differentiation capacity and cell type classification using RNA sequencing.


Sign in / Sign up

Export Citation Format

Share Document