Multiplex Functional Testing of Bioreactor-Upscaled First Trimester Human Umbilical Cord Perivascular Cells (FTM HUCPVC) and Bone Marrow-Derived Mesencymal Stem Cells (BMSC) using the chemstress® fingerprinting assay, reveals hidden differences between cell therapy candidates

Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S159-S160
Author(s):  
P. Szaraz ◽  
P. Mander ◽  
S. Davies ◽  
A. Gasner ◽  
J. Clifford ◽  
...  
1993 ◽  
Vol 16 (5_suppl) ◽  
pp. 113-115 ◽  
Author(s):  
R. Miniero ◽  
U. Ramenghi ◽  
N. Crescenzio ◽  
L. Perugini ◽  
A. Busca ◽  
...  

Human umbilical cord blood as an alternative source of hematopoietic stem cells for bone marrow reconstitution, has recently been demonstrated to yield successful HLA-matched placental blood grafts in children. It has been shown that cord blood contains sufficient progenitor cells to effect hematological reconstitution. Since then, more than 25 cord blood stem cells (CBSCs) transplants have been performed worldwide for the treatment of a variety of malignant and nonmalignant diseases. The majority of the grafts performed thus far have utilized CBSCs from HLA-identical siblings. However, much of the interest in this setting is devoted to the potential use of CBSCs for HLA-mismatched and unrelated transplants. Preliminary results suggest that allorecognition and graft-versus-host disease may be less intense in CBSCs transplants than in recipients of similarly compatible bone marrow. This review summarizes the results and potential future applications of cord blood transplantation.


2017 ◽  
Vol 210 ◽  
pp. 64-75 ◽  
Author(s):  
Hanaa S.E. Mousa ◽  
Sally M. Shalaby ◽  
Zienab A. Gouda ◽  
Fayza E. Ahmed ◽  
Aisha A. El-Khodary

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Peter Szaraz ◽  
Matthew Librach ◽  
Leila Maghen ◽  
Farwah Iqbal ◽  
Tanya A. Barretto ◽  
...  

Myocardial infarction (MI) causes an extensive loss of heart muscle cells and leads to congestive heart disease (CAD), the leading cause of mortality and morbidity worldwide. Mesenchymal stromal cell- (MSC-) based cell therapy is a promising option to replace invasive interventions. However the optimal cell type providing significant cardiac regeneration after MI is yet to be found. The aim of our study was to investigate the cardiomyogenic differentiation potential of first trimester human umbilical cord perivascular cells (FTM HUCPVCs), a novel, young source of immunoprivileged mesenchymal stromal cells. Based on the expression of cardiomyocyte markers (cTnT, MYH6, SIRPA, and CX43) FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to bone marrow MSCs, while their immunogenicity remained significantly lower as indicated by HLA-A and HLA-G expression and susceptibility to T cell mediated cytotoxicity. When applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells within 1 week of coculture, making them the first MSC type with this ability. Our results indicate that young FTM HUCPVCs have superior cardiomyogenic potential coupled with beneficial immunogenic properties when compared to MSCs of older tissue sources, suggesting thatin vitropredifferentiation could be a potential strategy to increase their effectivenessin vivo.


2009 ◽  
Vol 52 (10) ◽  
pp. 1753-1761 ◽  
Author(s):  
Mahmoud Aghaee-afshar ◽  
Mohammad Rezazadehkermani ◽  
Alireza Asadi ◽  
Reza Malekpour-afshar ◽  
Armita Shahesmaeili ◽  
...  

2015 ◽  
Vol 24 (3) ◽  
pp. 339-347 ◽  
Author(s):  
Dah-Ching Ding ◽  
Yu-Hsun Chang ◽  
Woei-Cherng Shyu ◽  
Shinn-Zong Lin

Sign in / Sign up

Export Citation Format

Share Document