Inducible secretion of IL-21 augments anti-tumor activity of piggyBac-manufactured chimeric antigen receptor T cells

Cytotherapy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 744-754
Author(s):  
Martin Štach ◽  
Pavlína Ptáčková ◽  
Martin Mucha ◽  
Jan Musil ◽  
Pavel Klener ◽  
...  
Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2604-2604 ◽  
Author(s):  
Stephan A. Grupp ◽  
David L Porter ◽  
David T Teachey ◽  
David M. Barrett ◽  
Anne Chew ◽  
...  

Abstract Abstract 2604 We previously reported on CART19 cells expressing a chimeric antigen receptor (CAR) with intracellular activation and costimulatory domains. Infusion of these cells results in 100 to 100,000× in vivo proliferation, tumor lysis syndrome followed by durable antitumor activity, and prolonged persistence in pts with B cell tumors. Here we report that in vivo proliferation of CART19 cells and potent anti-tumor activity is associated with CRS, leading to hemophagocytic lymphohistiocytosis (HLH), also termed MAS. We propose that MAS/HLH is a unique biomarker that is associated with and may be required for potent anti-tumor activity. Autologous T cells were lentivirally transduced with a CAR composed of anti-CD19 scFv/4-1BB/CD3-zeta, activated/expanded ex-vivo with anti-CD3/anti-CD28 beads, and then infused into ALL or CLL pts with persistent disease after 2–8 prior treatments. CART19 anti ALL activity was also modeled in a xenograft mouse model with high level of human ALL/human T cell engraftment and simultaneous detection of CAR T cells and ALL using 2-color bioluminescent imaging. We describe updated results of 10 pts who received CART19 cells elsewhere at ASH (Porter, et al), including 9 pts with CLL and 1 pediatric pt with relapsed refractory ALL. 6/9 evaluable pts had a CR or PR, including 4 sustained CRs. While there was no acute infusional toxicity, all responding pts also developed CRS. All had high fevers, as well as grade 3 or 4 hypotension/hypoxia. CRS preceded peak blood expression of CART19 cells, and then increased in intensity until the CART19 cell peak (D10–31 after infusion). The ALL pt experienced the most significant toxicity, with grade 4 hypotension and respiratory failure. Steroid therapy on D6 resulted in no improvement. On D9, noting high levels of TNFa and IL-6 (peak increases above baseline: IFNg at 6040x; IL-6 at 988x; IL-2R at 56x, IL-2 at 163× and TNFa at 17x), we administered TNFa and IL-6 antagonists entanercept and toc. This resulted in resolution of fever and hypotension within 12hr and a rapid wean from ventilator support to room air. These interventions had no apparent impact on CART19 cell expansion or efficacy: peak of CAR T cells (2539 CAR+ cells/uL; 77% of CD3 cells by flow) occurred on D11, and D23 bone marrow showed CR with negative MRD, compared to her initial on-study marrow which showed 65% blasts. Although she had no history of CNS ALL, spinal fluid showed detectable CART19 cells (21 lymphs/mcL; 78% CAR+). At 4mo post infusion, this pt remains in CR, with 17 CART19 cells/uL in the blood and 31% CAR+ CD3 cells in the marrow. Clinical assessment of subsequent responding patients shows all had evidence of MAS/HLH including dramatic elevations of ferritin and histologic evidence of HLH. Peak ferritin levels range from 44,000 to 605,000, preceding and continuing with peak T cell proliferation. Other consistent findings include rapid onset hepatosplenomegaly unrelated to disease and moderate DIC. Subsequently, 3 CLL patients have also been treated with toc, also with prompt and striking resolution of high fevers, hypotension and hypoxia. 1 received toc on D10 and achieved a CR accompanied by CART19 expansion. 1 had rapid resolution of CRS following toc administration on day 9 and follow up for response is too short. A 3rd CLL pt received toc on D3 for early fevers and had no CART-19 proliferation and no response. To model the timing of cytokine blockade, xenografts using bioluminescent primary pediatric ALL were established and then treated with extra cells from the clinical manufacture. The CART19 cells proliferated and resulted in prolonged survival. Cytokine blockade prior to T cell infusion with toc and/or etanercept abrogated disease control with less in vivo proliferation of infused CART19 cells, confirming the result seen in the one pt given early toc (D3). The optimal time and threshold to trigger cytokine blockade is currently being tested in these models. CART19 T cells can produce massive in-vivo expansion, long-term persistence, and anti-tumor efficacy, but can also induce significant CRS with features suggestive of MAS/HLH that responds rapidly to cytokine blockade. Given prior to initiation of significant CART19 proliferation, blockade of TNFa and/or IL-6 may interfere with proliferation and effector function, but if given at a point where cell proliferation is underway, toc may ameliorate the symptoms that we have observed correlate with robust clinical responses. Disclosures: Off Label Use: tocilizumab for cell therapy toxicity. Levine:University of Pennsylvania: financial interest due to intellectual property and patents in the field of cell and gene therapy. Conflict of interest is managed in accordance with University of Pennsylvania policy and oversight Patents & Royalties; TxCell: Consultancy, Membership on an entity's Board of Directors or advisory committees. Kalos:University of Pennsylvania: Patents & Royalties. June:Novartis: Research Funding, institution owned patents have been licensed by Novartis, institution owned patents have been licensed by Novartis Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document