Influence of chitosan and hydroxyapatite incorporation on properties of electrospun PVA/HA nanofibrous mats for bone tissue regeneration: Nanofibers optimization and in-vitro assessment

2021 ◽  
Vol 62 ◽  
pp. 102417
Author(s):  
Samar A. Salim ◽  
Samah A. Loutfy ◽  
Esmail M. El-Fakharany ◽  
Tarek H. Taha ◽  
Yasmen Hussien ◽  
...  
Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 61 ◽  
Author(s):  
Yannan Liu ◽  
Juan Gu ◽  
Daidi Fan

A novel, three-dimensional, porous, human-like collagen (HLC)/nano-hydroxyapatite (n-HA) scaffold cross-linked by 1,2,7,8-diepoxyoctane (DEO) was successfully fabricated, which showed excellent mechanical and superior biological properties for bone tissue regeneration in this study. The physicochemical characterizations of different n-HA/HLC/DEO (nHD) scaffolds were investigated by determining the morphology, compression stress, elastic modulus, Young’s modulus and enzymatic hydrolysis behavior in vitro. The results demonstrated that nHD-2 and nHD-3 scaffolds showed superior mechanical properties and resistance to enzymatic hydrolysis compared to nHD-1 scaffolds. The cell viability, live cell staining and cell adhesion analysis results demonstrated that nHD-2 scaffolds exhibited low cytotoxicity and excellent cytocompatibility compared with nHD-1 and nHD-3 scaffolds. Furthermore, subcutaneous injections of nHD-2 scaffolds in rabbits produced superior anti-biodegradation effects and histocompatibility compared with injections of nHD-1 and nHD-3 scaffolds after 1, 2 and 4 weeks. In addition, the repair of bone defects in rabbits demonstrated that nHD-2 scaffolds presented an improved ability for guided bone regeneration and reconstruction compared to commercially available bone scaffold composite hydroxyapatite/collagen (HC). Collectively, the results show that nHD-2 scaffolds show promise for application in bone tissue engineering due to their excellent mechanical properties, anti-biodegradation, anti-biodegradation, biocompatibility and bone repair effects.


2014 ◽  
Vol 2 (37) ◽  
pp. 6293-6305 ◽  
Author(s):  
Tao Liu ◽  
Xinbo Ding ◽  
Dongzhi Lai ◽  
Yongwei Chen ◽  
Ridong Zhang ◽  
...  

MGHA-introduced, an electrospun SF-based composite can exhibit improved physicochemical and biological properties to stimulate bone tissue regeneration and repair.


2017 ◽  
Vol 104 ◽  
pp. 1975-1985 ◽  
Author(s):  
S. Saravanan ◽  
Anjali Chawla ◽  
M. Vairamani ◽  
T.P. Sastry ◽  
K.S. Subramanian ◽  
...  

2016 ◽  
Vol 4 (22) ◽  
pp. 3916-3924 ◽  
Author(s):  
Xingdi Zhang ◽  
Deliang Zeng ◽  
Nan Li ◽  
Xinquan Jiang ◽  
Changsheng Liu ◽  
...  

A new type of large pore mesoporous Ca–Si-based bioceramics demonstrates high in vitro bioactivity and protein adsorption capability.


Sign in / Sign up

Export Citation Format

Share Document