Hyaluronic acid sustains platelet stability with prolonged growth factor release and accelerates wound healing by enhancing proliferation and collagen deposition in diabetic mice

Author(s):  
Sneha S. Rao ◽  
Ashwini Prabhu ◽  
Jagadish Kudkuli ◽  
Suprith Surya ◽  
P.D. Rekha
Author(s):  
Lauren Pruett ◽  
Regan Ellis ◽  
Meghan McDermott ◽  
Colleen Roosa ◽  
Donald Griffin

We present lyophilized heparin microgels which can be directly rehydrated with epidermal growth factor and mixed with PEG microgels to form heterogenous MAP scaffolds. These EGF-releasing MAP scaffolds promote accelerated dermal wound healing.


2021 ◽  
Vol 13 (3) ◽  
pp. 332-6
Author(s):  
Ronald Winardi Kartika ◽  
Idrus Alwi ◽  
Franciscus Dhyanagiri Suyatna ◽  
Ferry Sandra ◽  
Em Yunir ◽  
...  

BACKGROUND: Hyaluronic acid (HA) is an essential component of extracellular matrix and mediates signaling in wound healing. HA could induce growth factor release from Advanced Platelet Rich Fibrin (A-PRF), including Vascular Endothelial Growth Factor (VEGF) and Platelet-derived Growth Factor (PDGF). However, concentrations of the released-VEGF and PDGF have not been clearly disclosed. Therefore, current study was conducted to measure the release of these growth factors in HA + A-PRF gel of diabetic foot ulcer (DFU) subjects.METHODS: Twenty DFU subjects were included in the study and treated with A-PRF or HA+A-PRF. A-PRF was derived from autologous peripheral blood and processed with low-speed centrifugation. HA was added with a ratio of 1:0.6. A-PRF or HA + A-PRF was applied topically on DFU. Upper tips of A-PRF or HA + A-PRF gels were collected on day 0, 3 and 7 for measurements of VEGF and PDGF concentrations with Enzyme-linked Immune-sorbent Assay (ELISA) methods.RESULTS: On day-3, both VEGF and PDGF concentrations of HA + A-PRF group were significantly higher than the VEGF (p=0.000) and PDGF (p=0.019) concentrations of A-PRF group. The VEGF and PDGF concentrations were continuously and significantly increased on day-7 of HA + A-PRF group, compared to the VEGF (p=0.000) and PDGF (p=0.004) concentrations of A-PRF group.CONCLUSION: Combination HA+A-PRF induces VEGF and PDGF release from A-PRF. A mixture of A-PRF and HA could be more effective than A-PRF alone for treatment of DFU.KEYWORDS: hyaluronic acid, advanced platelet rich fibrin, PRF, growth factor, VEGF, PDGF, diabetic foot ulcer


AAPS PharmSci ◽  
2003 ◽  
Vol 5 (4) ◽  
pp. 101-111 ◽  
Author(s):  
Sharon L. Bourke ◽  
Mohammad Al-Khalili ◽  
Tonye Briggs ◽  
Bozena B. Michniak ◽  
Joachim Kohn ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 204173142199975
Author(s):  
Jihyun Kim ◽  
Kyoung-Mi Lee ◽  
Seung Hwan Han ◽  
Eun Ae Ko ◽  
Dong Suk Yoon ◽  
...  

Patients with diabetes experience impaired growth factor production such as epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), and they are reportedly involved in wound healing processes. Here, we report dual growth factor-loaded hyaluronate collagen dressing (Dual-HCD) matrix, using different ratios of the concentration of stabilized growth factors—stabilized-EGF (S-EGF) and stabilized-bFGF (S-bFGF). At first, the optimal concentration ratio of S-EGF to S-bFGF in the Dual-HCD matrix is determined to be 1:2 in type I diabetic mice. This Dual-HCD matrix does not cause cytotoxicity and can be used in vivo. The wound-healing effect of this matrix is confirmed in type II diabetic mice. Dual HCD enhances angiogenesis which promotes wound healing and thus, it shows a significantly greater synergistic effect than the HCD matrix loaded with a single growth factor. Overall, we conclude that the Dual-HCD matrix represents an effective therapeutic agent for impaired diabetic wound healing.


2021 ◽  
Vol 22 (12) ◽  
pp. 6267
Author(s):  
Meng-Jin Lin ◽  
Mei-Chun Lu ◽  
Hwan-You Chang

The goals of this study are to develop a high purity patented silk fibroin (SF) film and test its suitability to be used as a slow-release delivery for insulin-like growth factor-1 (IGF-1). The release rate of the SF film delivering IGF-1 followed zero-order kinetics as determined via the Ritger and Peppas equation. The release rate constant was identified as 0.11, 0.23, and 0.09% h−1 at 37 °C for SF films loaded with 0.65, 6.5, and 65 pmol IGF-1, respectively. More importantly, the IGF-1 activity was preserved for more than 30 days when complexed with the SF film. We show that the IGF-1-loaded SF films significantly accelerated wound healing in vitro (BALB/3T3) and in vivo (diabetic mice), compared with wounds treated with free IGF-1 and an IGF-1-loaded hydrocolloid dressing. This was evidenced by a six-fold increase in the granulation tissue area in the IGF-1-loaded SF film treatment group compared to that of the PBS control group. Western blotting analysis also demonstrated that IGF-1 receptor (IGF1R) phosphorylation in diabetic wounds increased more significantly in the IGF-1-loaded SF films group than in other experimental groups. Our results suggest that IGF-1 sustained release from SF films promotes wound healing through continuously activating the IGF1R pathway, leading to the enhancement of both wound re-epithelialization and granulation tissue formation in diabetic mice. Collectively, these data indicate that SF films have considerable potential to be used as a wound dressing material for long-term IGF-1 delivery for diabetic wound therapy.


Sign in / Sign up

Export Citation Format

Share Document