Drug-drug eutectic mixtures of celecoxib with tapentadol and milnacipran which could improve analgesic and antidepressant efficacy

Author(s):  
Zhengge Yang ◽  
Ru Ma ◽  
Yin Chen ◽  
Yifang Zhang ◽  
Xin Liu ◽  
...  
2020 ◽  
Vol 7 (3) ◽  
pp. 314-325
Author(s):  
Barla Karuna Devi ◽  
Swathi Naraparaju ◽  
Chaganti Soujanya ◽  
Sayan Dutta Gupta

: Green chemistry emphasizes designing novel routes to overcome health and environmental problems that occur during a chemical reaction. Green solvents are used in place of conventional solvents that are hazardous to both human and the environment. Solvents like water, ionic liquids, supercritical CO2, biosolvents, organic carbonates, and deep eutectic mixtures can be used as green solvents. The review focuses on the properties, applications, and limitations of these solvents.


2021 ◽  
Vol 5 ◽  
pp. 247054702110068
Author(s):  
Cheng-Ta Li ◽  
Chih-Ming Cheng ◽  
Chi-Hung Juan ◽  
Yi-Chun Tsai ◽  
Mu-Hong Chen ◽  
...  

Background Prolonged intermittent theta-burst stimulation (piTBS) and repetitive transcranial magnetic stimulation (rTMS) are effective antidepressant interventions for major depressive disorder (MDD). Cognition-modulated frontal theta (frontalθ) activity had been identified to predict the antidepressant response to 10-Hz left prefrontal rTMS. However, whether this marker also predicts that of piTBS needs further investigation. Methods The present double-blind randomized trial recruited 105 patients with MDD who showed no response to at least one adequate antidepressant treatment in the current episode. The recruited patients were randomly assigned to one of three groups: group A received piTBS monotherapy; group B received rTMS monotherapy; and group C received sham stimulation. Before a 2-week acute treatment period, electroencephalopgraphy (EEG) and cognition-modulated frontal theta changes (Δfrontalθ) were measured. Depression scores were evaluated at baseline, 1 week, and 2 weeks after the initiation of treatment. Results The Δfrontalθ at baseline was significantly correlated with depression score changes at week 1 (r = −0.383, p = 0.025) and at week 2 for rTMS group (r = −0.419, p = 0.014), but not for the piTBS and sham groups. The area under the receiver operating characteristic curve for Δfrontalθ was 0.800 for the rTMS group (p = 0.003) and was 0.549 for the piTBS group (p = 0.619). Conclusion The predictive value of higher baseline Δfrontalθ for antidepressant efficacy for rTMS not only replicates previous results but also implies that the antidepressant responses to rTMS could be predicted reliably at baseline and both piTBS and rTMS could be effective through different neurobiological mechanisms.


2021 ◽  
Vol 5 ◽  
pp. 247054702110142
Author(s):  
Alexandra A. Alario ◽  
Mark J. Niciu

Major depressive disorder (MDD) is one of the leading causes of morbidity and all-cause mortality (including suicide) worldwide, and, unfortunately, first-line monoaminergic antidepressants and evidence-based psychotherapies are not effective for all patients. Subanesthetic doses of the N-methyl-D-aspartate receptor antagonists and glutamate modulators ketamine and S-ketamine have rapid and robust antidepressant efficacy in such treatment-resistant depressed patients (TRD). Yet, as with all antidepressant treatments including electroconvulsive therapy (ECT), not all TRD patients adequately respond, and we are presently unable to a priori predict who will respond or not respond to ketamine. Therefore, antidepressant treatment response biomarkers to ketamine have been a major focus of research for over a decade. In this article, we review the evidence in support of treatment response biomarkers, with a particular focus on genetics, functional magnetic resonance imaging, and neurophysiological studies, i.e. electroencephalography and magnetoencephalography. The studies outlined here lay the groundwork for replication and dissemination.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1431
Author(s):  
Fadzai P. Mutingwende ◽  
Pierre P. D. Kondiah ◽  
Philemon Ubanako ◽  
Thashree Marimuthu ◽  
Yahya E. Choonara

Nanotechnology has aided in the advancement of drug delivery for the treatment of several neurological disorders including depression. Depression is a relatively common mental disorder which is characterized by a severe imbalance of neurotransmitters. Several current therapeutic regimens against depression display drawbacks which include low bioavailability, delayed therapeutic outcome, undesirable side effects and drug toxicity due to high doses. The blood–brain barrier limits the entry of the drugs into the brain matrix, resulting in low bioavailability and tissue damage due to drug accumulation. Due to their size and physico-chemical properties, nanotechnological drug delivery systems present a promising strategy to enhance the delivery of nanomedicines into the brain matrix, thereby improving bioavailability and limiting toxicity. Furthermore, ligand-complexed nanocarriers can improve drug specificity and antidepressant efficacy and reduce drug toxicity. Biopolymers and nanocarriers can also be employed to enhance controlled drug release and reduce the hepatic first-pass effect, hence reducing the dosing frequency. This manuscript reviews recent advances in different biopolymers, such as polysaccharides and other nanocarriers, for targeted antidepressant drug delivery to the brain. It probes nano-based strategies that can be employed to enhance the therapeutic efficacy of antidepressants through the oral, intranasal, and parenteral routes of administration.


2021 ◽  
pp. 131342
Author(s):  
Ghaiath Almustafa ◽  
Ahmad S. Darwish ◽  
Tarek Lemaoui ◽  
Matthew J. O'Conner ◽  
Shady Amin ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document