scholarly journals In situ effect of the combination of fluoridated toothpaste and fluoridated gel containing sodium trimetaphosphate on enamel demineralization

2018 ◽  
Vol 68 ◽  
pp. 59-65 ◽  
Author(s):  
Sara Akabane ◽  
Alberto Carlos Delbem ◽  
Juliano Pessan ◽  
Luhana Garcia ◽  
Nayara Emerenciano ◽  
...  
2018 ◽  
Vol 96 ◽  
pp. 223-229 ◽  
Author(s):  
Nayara Gonçalves Emerenciano ◽  
Alberto Carlos Botazzo Delbem ◽  
Juliano Pelim Pessan ◽  
Gabriel Pereira Nunes ◽  
Francisco Nunes Souza Neto ◽  
...  

2016 ◽  
Vol 2 (3) ◽  
pp. 233-240 ◽  
Author(s):  
M.D.B. Souza ◽  
J.P. Pessan ◽  
C.S. Lodi ◽  
J.A.S. Souza ◽  
E.R. Camargo ◽  
...  

This double-blind crossover study assessed the effects of a low-fluoride (low-F) dentifrice containing nanosized sodium trimetaphosphate (TMP) on enamel demineralization in situ. Nineteen subjects wore palatal appliances containing 4 blocks of bovine enamel and were randomly assigned to brush their teeth with placebo (without F/TMP), 250-ppm F (250F), 250F plus 0.05% nanosized TMP (250F-TMPnano), and 1,100-ppm F (1,100F) dentifrices during 7 d, under cariogenic challenge. Enamel surface hardness and cross-sectional hardness (ΔKHN [Knoop hardness number]), as well as F, calcium (Ca), and phosphorus (P) concentrations, were determined. Also, biofilm that formed on the blocks was analyzed for F, Ca, P, and insoluble extracellular polysaccharide concentrations. Data were submitted to analysis-of-variance models and Student-Newman-Keuls test ( P < 0.05). The 250F-TMPnano dentifrice promoted the lowest ΔKHN among all groups ( P < 0.001), while the percentage of surface hardness loss was similar to 1,100F. Also, similar F, Ca, and P concentrations in enamel were observed for 1,100F and 250F-TMPnano. In the biofilm, the highest F content was observed for 1,100F; Ca content was similar between 1,100F and 250F-TMPnano; and P content was similar among all groups. Similar extracellular polysaccharide values were observed for 250F-TMPnano and 1,100F ( P < 0.001), ionic activity of CaHPO40, CaF+, and HF0 ( P < 0.05) and degree of saturation of hydroxyapatite and CaF2 ( P < 0.05). It was concluded that the protective effect of 250F-TMPnano dentifrice was similar to a conventional dentifrice for most of the variables studied, having a more pronounced effect on the subsurface lesion when compared with the conventional toothpaste (1,100F). Knowledge Transfer Statement: Although toothpastes containing ≥1,000-ppm fluoride are more effective than low-fluoride formulations against dental caries, their early use can lead to side effects. This has prompted intensive research on alternatives to increase the anticaries effect of low-fluoride toothpastes. The present in situ study demonstrated that the addition of sodium trimetaphosphate nanoparticles to toothpastes containing 250-ppm fluoride significantly enhances the protective effect of this formulation against enamel demineralization to levels comparable to a 1,100-ppm fluoride toothpaste in terms of most of the variables studied. Most important, this formulation promoted the lowest loss of subsurface hardness among all groups, suggesting that caries lesions would take longer to develop under clinical conditions when compared with a conventional (1,100-fluoride) toothpaste.


2015 ◽  
Vol 49 (4) ◽  
pp. 394-400 ◽  
Author(s):  
Eliana M. Takeshita ◽  
Marcelle Danelon ◽  
Luciene P. Castro ◽  
Kikue T. Sassaki ◽  
Alberto C.B. Delbem

Objective: The aim of the present study was to evaluate in situ whether a toothpaste with low fluoride associated with sodium trimetaphosphate (TMP) would provide similar effect to that of a 1,100 ppm F toothpaste. Design: This crossover double-blind study consisted of 4 phases (14 days each), during which 10 volunteers wore oral appliances containing 4 enamel bovine blocks. The cariogenic challenge was performed by the application of a 20% sucrose solution (6×/day). The toothpaste treatments (2×/day) were: placebo, 500 ppm F, 500 ppm F plus 1% TMP, and 1,100 ppm F. At the end, enamel mineral loss and biofilm composition were analyzed. Results: The toothpaste with 500 ppm F plus 1% TMP showed the lowest mineral loss (p < 0.05). Regarding the fluoride and calcium concentrations in the enamel and in the biofilm, there were no significant differences between 500 ppm F plus 1% TMP, and 1,100 ppm F toothpastes (p > 0.569), but they were significantly different when compared to toothpaste with 500 ppm F (p < 0.050). Conclusion: The addition of 1% TMP to a low-fluoride toothpaste reduces enamel demineralization in situ similar to a 1,100 ppm F toothpaste.


2001 ◽  
Vol 80 (8) ◽  
pp. 1721-1724 ◽  
Author(s):  
M.S. Duggal ◽  
K.J. Toumba ◽  
B.T. Amaechi ◽  
M.B. Kowash ◽  
S.M. Higham

2001 ◽  
Vol 35 (2) ◽  
pp. 106-110 ◽  
Author(s):  
J.A. Cury ◽  
L.N. Hashizume ◽  
A.A. Del Bel Cury ◽  
C.P.M. Tabchoury

2009 ◽  
Vol 20 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Rita Sarmiento Villena ◽  
Livia Maria Andaló Tenuta ◽  
Jaime Aparecido Cury

This in situ crossover and blind study was conducted to investigate the effect of professional acidulated phosphate fluoride (APF) gel application time on the subsequent inhibition of enamel demineralization. During 3 phases of 28 days each, 15 volunteers wore palatal appliances containing 4 enamel blocks, which were subjected to 3 treatment groups: not treated (control) and pre-treated with APF gel for 1 or 4 min. Dental plaque was allowed to accumulate on the blocks and the appliances were immersed in 10% sucrose solution 3 times a day simulating a cariogenic challenge. After each phase, the blocks were removed to evaluate enamel demineralization and concentration of fluoride (F) remaining after the cariogenic challenge. F formed on enamel was determined in additional enamel blocks subjected only to APF gel application. APF gel was efficient in reducing enamel demineralization (p<0.05), irrespective of the application time (p>0.05). Also, the concentration of the F formed and retained on enamel was significantly higher after APF gel application (p<0.05), but the effect of time of application was not statistically significant (p>0.05). The results suggest that APF application for either 1 or 4 min is equally efficient to increase F concentration in enamel and reduce enamel demineralization.


1992 ◽  
Vol 26 (1) ◽  
pp. 18-21 ◽  
Author(s):  
J. Arends ◽  
J. Christoffersen ◽  
M.R Christoffersen ◽  
B. Øgaard ◽  
A.G. Dijkman ◽  
...  

2006 ◽  
Vol 85 (7) ◽  
pp. 617-621 ◽  
Author(s):  
L.K.A. Rodrigues ◽  
M. Nobre dos Santos ◽  
J.D.B. Featherstone

Laser and fluoride treatments have been shown to inhibit enamel demineralization in the laboratory. However, the intra-oral effects of this association have not been tested. This study assessed in situ the effect of a Transversely Excited Atmospheric CO2 laser (λ = 9.6 μm) and the use of pressure fluoridated dentifrice on enamel demineralization. During two 14-day phases, 17 volunteers wore palatal appliances containing human enamel slabs assigned to treatment groups, as follows: (1) non-fluoride dentifrice, (2) CO2 laser irradiation plus non-fluoride dentifrice, (3) fluoride dentifrice, and (4) CO2 laser irradiation plus fluoride dentifrice. A 20% sucrose solution was dripped onto the slabs 8 times per day. The specimens treated with laser and/or fluoridated dentifrice presented a significantly lower mineral loss when compared with those from the non-fluoride dentifrice group. The results suggested that CO2 laser treatment of enamel inhibits demineralization in the human mouth, being more effective when associated with fluoride.


2016 ◽  
Vol 50 (6) ◽  
pp. 571-578 ◽  
Author(s):  
Eliana M. Takeshita ◽  
Marcelle Danelon ◽  
Luciene P. Castro ◽  
Robson F. Cunha ◽  
Alberto C. B. Delbem

Objective: To evaluate the effect of a low-fluoride (F) toothpaste supplemented with sodium trimetaphosphate (TMP) on enamel remineralization in situ. Design: Bovine enamel blocks were selected on the basis of their surface hardness (SH) after caries-like lesions had been induced, and randomly divided into 4 treatment groups, according to the toothpastes used: without F or TMP (placebo); 500 ppm F; 500 ppm F plus 1% TMP; and 1,100 ppm F. The study design was blinded and crossover and performed in 4 phases of 3 days each. Eleven subjects used palatal appliances containing 4 bovine enamel blocks which were treated 3 times per day during 1 min each time, with natural slurries of saliva and toothpaste formed in the oral cavity during toothbrushing. After each phase, the percentages of surface (%SHR) and subsurface hardness recovery (%ΔKHNR) were calculated. F, calcium (Ca), and phosphorus (Pi) contents in enamel were also determined. Data were analyzed by 1-way, repeated-measures ANOVA, followed by the Student-Newman-Keuls test (p < 0.05). Results: Toothpaste with 500 ppm F + TMP and 1,100 ppm F showed similar %SHR and %ΔKHNR as well as enamel F, Ca, and Pi concentrations. Conclusion: The addition of TMP to a low-fluoride toothpaste promoted a similar remineralizing capacity to that of a standard (1,100 ppm F) toothpaste in situ.


2003 ◽  
Vol 37 (3) ◽  
pp. 194-199 ◽  
Author(s):  
J.A. Cury ◽  
S.B. Francisco ◽  
G.S. Simões ◽  
A.A. Del Bel Cury ◽  
C.P.M. Tabchoury

Sign in / Sign up

Export Citation Format

Share Document