Erythropoietin promotes hair shaft growth in cultured human hair follicles and modulates hair growth in mice

2010 ◽  
Vol 59 (2) ◽  
pp. 86-90 ◽  
Author(s):  
Bo Mi Kang ◽  
Seung Hyun Shin ◽  
Mi Hee Kwack ◽  
HyeRim Shin ◽  
Ji Won Oh ◽  
...  
PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57226 ◽  
Author(s):  
Yong Miao ◽  
Yabin Sun ◽  
Wenjun Wang ◽  
Benjun Du ◽  
Shun-e Xiao ◽  
...  

Author(s):  
Ramya Lakshmi Rajendran ◽  
Prakash Gangadaran ◽  
Mi Hee Kwack ◽  
Ji Min Oh ◽  
Chae Moon Hong ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF), adrenocorticotropic hormone (ACTH), and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs. Results CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS). Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC), ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


2020 ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background: Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF) , adrenocorticotropic hormone (ACTH) , and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs.Results: CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS) . Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC) , ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion: The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mira Choi ◽  
Soon-Jin Choi ◽  
Sunhyae Jang ◽  
Hye-In Choi ◽  
Bo-Mi Kang ◽  
...  

AbstractShikimic acid (SA) has recently been found to be a major component of plant stem cells. The exact effects of SA on human hair follicles (HFs) is unknown. The purpose of this study was to examine the effects of SA on hair growth. We investigated the effect of SA on an in vivo C57BL/6 mouse model. We examined the expression of mannose receptor (MR), which is a known receptor of SA, in human HFs and the effect of SA on human dermal papilla cells (hDPCs), outer root sheath cells (hORSCs), and on ex vivo human hair organ culture. SA significantly prolonged anagen hair growth in the in vivo mouse model. We confirmed expression of the MR in human HFs, and that SA increased the proliferation of hDPCs and hORSCs. It was found that SA enhanced hair shaft elongation in an ex vivo human hair organ culture. SA treatment of hDPCs led to increased c-myc, hepatocyte growth factor, keratinocyte growth factor and vascular endothelial growth factor levels and upregulation of p38 MAPK and cAMP response element-binding protein levels. Our results show that SA promotes hair growth and may serve as a new therapeutic agent in the treatment of alopecia.


2018 ◽  
Vol 6 (7) ◽  
pp. 317-326
Author(s):  
Abraham A.

In this manuscript, the phenomena herein reported have been observed in some of prior publications by this author. This manuscript is a compilation of cross-species similarities on the biomagnetic fields (BMFs) emitted by the human hair and mouse vibrissa follicles. The introduction of a novel optical microscopy technique designed to detect BMFs in plant and animal tissue has allowed researchers to publish interesting and unique findings. They range from hair follicles BMFs penetrating glass barriers to the biomagnetic effect on crystals accretion of fronted hair follicles. Both rodents (whiskers) and human (hair follicles) show similarities regarding spontaneous BMFs expressed as light rays with one sided greater BMF activity. The technique used as a base the iron staining property of Prussian Blue Stain (PBS) mixed with very fine iron particles 2000 nm in diameter (for magnetic attraction). For this manuscript, previously published images were re-reviewed and addressed as such in the manuscript. Both PBS mixed with the diamagnetic Potassium Ferrocyanide and PBS mixed with the paramagnetic Potassium Ferricyanide were alternatively chosen in those experiments. During evaporation, the hair shaft and follicle, due to their intrinsic diamagnetism, repels the crystals of diamagnetic PBS and attracts the paramagnetic ones. Experiments are presented consistently demonstrating a unique pattern observed of BMFs skewed towards or along one side of the human hair shaft and follicle of humans and rodent vibrissa whiskers. This is attributed to “The Photoelectric Effect” discovered in 1887 by the German physicist Heinrich Rudolf Hertz.


Author(s):  
Abraham A. Embi

The human hair consists of a follicle anchored in the skin and a protruding shaft, it has also been described as a miniorgan, having its own cell divisions, metabolism, and known to undergo aging stages; eventually reaching a point where the old hair sheds and a new hair growing cycle begins from the same follicular tissue. Using sophisticated magnetometers, magnetic field emitted by direct current (DC) in human hair follicles were detected and introduced in 1980. Most recently in 2015, a tabletop optical microscopy method was developed and published in 2016, thus allowing for the detection of hair follicles and shaft magnetic fields. Qualitative images are presented where the bipolar electrical property of the shaft is documented. This finding was inferred since blood tissue carries a negative charge, thus repelled by an equal charge; experiments support a positive (+) field as triggering coagulation. The shaft is repeatedly shown in experiments to express a contralateral positive side triggering. Fibrin formation is also documented by images showing intricate networks indicative of blood coagulation. In conclusion, the genesis of hair shafts bipolarity is shown resulting from a “gap” in the follicle electromagnetic fields inhibiting energy from fully engulfing the shaft.


2020 ◽  
Author(s):  
Eun Young Lee ◽  
You Jin Nam ◽  
Sangjin Kang ◽  
Eun Ju Choi ◽  
Inbo Han ◽  
...  

Abstract Background: Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF) , adrenocorticotropic hormone (ACTH) , and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs. Results: CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS) . Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC) , ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. Conclusion: The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.


Sign in / Sign up

Export Citation Format

Share Document