High glucose environment induces M1 macrophage polarization that impairs keratinocyte migration via TNF-α: An important mechanism to delay the diabetic wound healing

2019 ◽  
Vol 96 (3) ◽  
pp. 159-167 ◽  
Author(s):  
Shu-Mei Huang ◽  
Ching-Shuang Wu ◽  
Min-Hsi Chiu ◽  
Chin-Han Wu ◽  
Yu-Tang Chang ◽  
...  
2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Keizo Kohno ◽  
Satomi Koya-Miyata ◽  
Akira Harashima ◽  
Takahiko Tsukuda ◽  
Masataka Katakami ◽  
...  

Abstract Background NK-4 has been used to promote wound healing since the early-1950s; however, the mechanism of action of NK-4 is unknown. In this study, we examined whether NK-4 exerts a regulatory effect on macrophages, which play multiple roles during wound healing from the initial inflammatory phase until the tissue regeneration phase. Results NK-4 treatment of THP-1 macrophages induced morphological features characteristic of classically-activated M1 macrophages, an inflammatory cytokine profile, and increased expression of the M1 macrophage-associated molecules CD38 and CD86. Interestingly, NK-4 augmented TNF-α production by THP-1 macrophages in combination with LPS, Pam3CSK4, or poly(I:C). Furthermore, NK-4 treatment enhanced THP-1 macrophage phagocytosis of latex beads. These results indicate that NK-4 drives macrophage polarization toward an inflammatory M1-like phenotype with increased phagocytic activity. Efferocytosis is a crucial event for resolution of the inflammatory phase in wound healing. NK-4-treated THP-1 macrophages co-cultured with apoptotic Jurkat E6.1 (Apo-J) cells switched from an M1-like phenotype to an M2-like phenotype, as seen in the inverted ratio of TNF-α to IL-10 produced in response to LPS. We identified two separate mechanisms that are involved in this phenotypic switch. First, recognition of phosphatidylserine molecules on Apo-J cells by THP-1 macrophages downregulates TNF-α production. Second, phagocytosis of Apo-J cells by THP-1 macrophages and activation of PI3K/Akt signaling pathway upregulates IL-10 production. Conclusion It is postulated that the phenotypic switch from a proinflammatory M1-like phenotype to an anti-inflammatory M2-like phenotype is dysregulated due to impaired efferocytosis of apoptotic neutrophils at the wound site. Our results demonstrate that NK-4 improves phagocytosis of apoptotic cells, suggesting its potential as a therapeutic strategy to resolve sustained inflammation in chronic wounds.


Inflammation ◽  
2015 ◽  
Vol 39 (2) ◽  
pp. 687-699 ◽  
Author(s):  
Miao-Wu Dong ◽  
Ming Li ◽  
Jie Chen ◽  
Tong-Tong Fu ◽  
Ke-Zhi Lin ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Fanxing Xu ◽  
Chenying Zhang ◽  
Dana T. Graves

Impaired diabetic wound healing constitutes a major health problem. The impaired healing is caused by complex factors such as abnormal keratinocyte and fibroblast migration, proliferation, differentiation, and apoptosis, abnormal macrophage polarization, impaired recruitment of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs), and decreased vascularization. Diabetes-enhanced and prolonged expression of TNF-αalso contributes to impaired healing. In this paper, we discuss the abnormal cell responses in diabetic wound healing and the contribution of TNF-α.


Sign in / Sign up

Export Citation Format

Share Document