Clay-based catalyst synthesized for chemical oxidation of phenanthrene contaminated soil using hydrogen peroxide and persulfate

2020 ◽  
Vol 8 (2) ◽  
pp. 103568
Author(s):  
Vivian M.A. Magalhães ◽  
Gabriela P. Mendes ◽  
José Daladiê B. Costa-Filho ◽  
Renato Cohen ◽  
Carmem S.M. Partiti ◽  
...  
Author(s):  
Paula Cajal-Mariñosa ◽  
Ruth G. de la Calle ◽  
F. Javier Rivas ◽  
Tuula Tuhkanen

AbstractThe removal efficiency of two different types of peroxide addition, catalyzed hydrogen peroxide (CHP) and sodium percarbonate (SPC) were compared on a highly PAH-contaminated soil from a wood impregnation site. In an attempt to simulate real in situ reagents delivery, experiments have been carried out in acrylic columns. The main parameters affecting contaminant removal were the reagent’s temperature and the total addition of peroxide (g


2009 ◽  
Vol 3 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Olexandr Karpenko ◽  
◽  
Vira Lubenets ◽  
Elena Karpenko ◽  
Volodymyr Novikov ◽  
...  

This review covers the main agents used for in situ and ex situ chemical oxidation of organic contaminants particularly oil products, in soil and water environments. Among them there are hydrogen peroxide, permanganate salts, ozone and sodium persulfate. The fields of application, as well as benefits and disadvantages of the mentioned agents use were described.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3404
Author(s):  
Wen-Yu Chen ◽  
Prakash Pokhrel ◽  
Ying-Shun Wang ◽  
Sheng-Lung Lin ◽  
Min-Hsin Liu

Environmental pollution has been a major concern in recent times, and soil and groundwater pollution are areas which have received particular focus. This has led to the development of various remediation techniques such as excavation, soil vapor extraction, bioremediation, chemical oxidation, and so on. Among all remediation techniques, chemical oxidation has been proven to be the most effective and feasible technique around the world. In this study, various combinations of ozone and hydrogen peroxide were used to treat diesel-contaminated soil and groundwater in an experimental setup. Experimental soil and groundwater were prepared with properties similar to the contaminated soil. An ozone generator and a pump injection system were deployed for combining ozone and hydrogen peroxide. Five different experiment batches were prepared based on the hydrogen peroxide concentration and its ratio to the soil. The diesel concentration in the water dropped from 300 mg/L to 7 mg/L in the first hour of treatment, which dropped below the detection limit (0.01 mg/L) thereafter. Similarly, 63.9% degradation was achieved with the combined sparging of ozone and hydrogen peroxide in the soil. Ozone combined with 7% hydrogen peroxide was the most promising combination for removing the contaminants. In addition, this research explored the hydroxyl radical conversion rate of ozone and the perozone, the difference in order of magnitude is greater than one which shows that the perozone has better oxidation capacity than ozone only. The findings of this study show that combining ozone with hydrogen peroxide is a competent and feasible onsite remediation method for diesel contaminants in soil and groundwater. Thus, this method can be applied in local gas stations, accidental spillage sites, and small-scale refineries for onsite treatment in a cost-effective and technically sound way within a short time span.


2010 ◽  
Vol 9 (3) ◽  
pp. 351-360 ◽  
Author(s):  
Abdelnaser Omran ◽  
Hamidi Abdul Aziz ◽  
Marniyanti Mamat Noor

1994 ◽  
Vol 30 (3) ◽  
pp. 73-78 ◽  
Author(s):  
O. Tünay ◽  
S. Erden ◽  
D. Orhon ◽  
I. Kabdasli

This study evaluates the characterization and treatability of 2,4-D production wastewaters. Wastewaters contain 20000-40000 mg/l COD, 17000-30000 mg/l chloride and pH is around 1.0. Chemical oxidation with hydrogen peroxide provided almost complete COD removal. The optimum conditions are 3:1 H2O2/COD oxidant dosage, 3000 mg/l Fe3+ as catalyst and pH 3. Partial oxidation at 0.5:1 H2O2//COD ratio is also effective providing 67% COD removal. A batch activated sludge system is used for biological treatability. Dilution is needed to maintain a tolerable chloride concentration which increases through COD removal. pH also increased during COD removal. 85% COD removal is obtained for the 50% dilution at an organic loading of 0.3 day‒1 on a COD basis. Completely and partially oxidized wastewaters are also treated in the activated sludge down to 30 mg/l BOD5.


2012 ◽  
Vol 15 (1) ◽  
Author(s):  
Anna Goi ◽  
Marika Viisimaa ◽  
Oleksandr Karpenko

AbstractThe efficacy of DDT-contaminated soil treatment with hydrogen peroxide and persulfate utilizing different activation aids and the chemicals combination with biosurfactant was evaluated. The addition of a supplementary activator was able to improve the degradation of total DDT with both the hydrogen peroxide and persulfate oxidation processes indicating a lack of available activator. Ferrous iron added gradually was effectively utilized in the oxidation system with gradual addition of hydrogen peroxide, while chelated metal iron addition promoted the oxidation with more stable persulfate. The treatment with solid carriers of hydrogen peroxide, either calcium peroxide or magnesium peroxide, can be an effective alternative to the liquid one resulting in a higher degradation level of the contaminant. Strong alkalization with elevated dosages of NaOH sustained the persulfate oxidation of DDT. The addition of biosurfactant, rhamnolipid-alginate complex obtained by biosynthesis of strain Pseudomonas sp. PS-17, and EDTA improved the degradation of DDT by both persulfate and hydrogen peroxide oxidation processes indicating that the combined application of chemical oxidants and biosurfactant at natural soil pH has prospects as an effective option for contaminated soil remediation.


1997 ◽  
Vol 36 (2-3) ◽  
pp. 151-154 ◽  
Author(s):  
H. Grigoropoulou ◽  
C. Philippopoulos

The chemical oxidation of phenol and chlorophenols with hydrogen peroxide in the presence of soluble iron can be economically attractive at low oxidant consumption, leading then to intermediates that are more easily biodegradable. The homogeneous oxidation of phenol and chlorophenols in aqueous solutions with hydrogen peroxide is studied at oxidant : phenol ratio of about 4:1 and 16:1 (mol/mol) at various catalyst concentrations, at ambient temperature without pH control. Ferric chloride, ferric and ferrous sulphate and ferrous ammonium sulphate are used as oxidation catalysts. Ferric salts induce higher oxidation rates than ferrous ones and the nature of the anions present does not affect reaction rate. 4-Chlorophenol is found to be most resistant to oxidation and 2,4,6-Trichlorophenol is not attacked by hydrogen peroxide in the presence of ferric ions at the experimental conditions studied.


Sign in / Sign up

Export Citation Format

Share Document