Reducing leachable petroleum hydrocarbon concentration in weathered fuel oil contaminated soil by chemical oxidation with hydrogen peroxide

2017 ◽  
Vol 15 (11) ◽  
pp. 2381-2388 ◽  
Author(s):  
E. Romero-Frasca ◽  
R. H. Adams ◽  
V. I. Domínguez-Rodríguez
Author(s):  
Paula Cajal-Mariñosa ◽  
Ruth G. de la Calle ◽  
F. Javier Rivas ◽  
Tuula Tuhkanen

AbstractThe removal efficiency of two different types of peroxide addition, catalyzed hydrogen peroxide (CHP) and sodium percarbonate (SPC) were compared on a highly PAH-contaminated soil from a wood impregnation site. In an attempt to simulate real in situ reagents delivery, experiments have been carried out in acrylic columns. The main parameters affecting contaminant removal were the reagent’s temperature and the total addition of peroxide (g


2020 ◽  
Vol 8 (2) ◽  
pp. 103568
Author(s):  
Vivian M.A. Magalhães ◽  
Gabriela P. Mendes ◽  
José Daladiê B. Costa-Filho ◽  
Renato Cohen ◽  
Carmem S.M. Partiti ◽  
...  

2020 ◽  
Vol 129 (5) ◽  
pp. 603-612 ◽  
Author(s):  
Yun-An Chen ◽  
Pao-Wen Grace Liu ◽  
Liang-Ming Whang ◽  
Yi-Ju Wu ◽  
Sheng-Shung Cheng

2009 ◽  
Vol 3 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Olexandr Karpenko ◽  
◽  
Vira Lubenets ◽  
Elena Karpenko ◽  
Volodymyr Novikov ◽  
...  

This review covers the main agents used for in situ and ex situ chemical oxidation of organic contaminants particularly oil products, in soil and water environments. Among them there are hydrogen peroxide, permanganate salts, ozone and sodium persulfate. The fields of application, as well as benefits and disadvantages of the mentioned agents use were described.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3404
Author(s):  
Wen-Yu Chen ◽  
Prakash Pokhrel ◽  
Ying-Shun Wang ◽  
Sheng-Lung Lin ◽  
Min-Hsin Liu

Environmental pollution has been a major concern in recent times, and soil and groundwater pollution are areas which have received particular focus. This has led to the development of various remediation techniques such as excavation, soil vapor extraction, bioremediation, chemical oxidation, and so on. Among all remediation techniques, chemical oxidation has been proven to be the most effective and feasible technique around the world. In this study, various combinations of ozone and hydrogen peroxide were used to treat diesel-contaminated soil and groundwater in an experimental setup. Experimental soil and groundwater were prepared with properties similar to the contaminated soil. An ozone generator and a pump injection system were deployed for combining ozone and hydrogen peroxide. Five different experiment batches were prepared based on the hydrogen peroxide concentration and its ratio to the soil. The diesel concentration in the water dropped from 300 mg/L to 7 mg/L in the first hour of treatment, which dropped below the detection limit (0.01 mg/L) thereafter. Similarly, 63.9% degradation was achieved with the combined sparging of ozone and hydrogen peroxide in the soil. Ozone combined with 7% hydrogen peroxide was the most promising combination for removing the contaminants. In addition, this research explored the hydroxyl radical conversion rate of ozone and the perozone, the difference in order of magnitude is greater than one which shows that the perozone has better oxidation capacity than ozone only. The findings of this study show that combining ozone with hydrogen peroxide is a competent and feasible onsite remediation method for diesel contaminants in soil and groundwater. Thus, this method can be applied in local gas stations, accidental spillage sites, and small-scale refineries for onsite treatment in a cost-effective and technically sound way within a short time span.


2010 ◽  
Vol 9 (3) ◽  
pp. 351-360 ◽  
Author(s):  
Abdelnaser Omran ◽  
Hamidi Abdul Aziz ◽  
Marniyanti Mamat Noor

1994 ◽  
Vol 30 (3) ◽  
pp. 73-78 ◽  
Author(s):  
O. Tünay ◽  
S. Erden ◽  
D. Orhon ◽  
I. Kabdasli

This study evaluates the characterization and treatability of 2,4-D production wastewaters. Wastewaters contain 20000-40000 mg/l COD, 17000-30000 mg/l chloride and pH is around 1.0. Chemical oxidation with hydrogen peroxide provided almost complete COD removal. The optimum conditions are 3:1 H2O2/COD oxidant dosage, 3000 mg/l Fe3+ as catalyst and pH 3. Partial oxidation at 0.5:1 H2O2//COD ratio is also effective providing 67% COD removal. A batch activated sludge system is used for biological treatability. Dilution is needed to maintain a tolerable chloride concentration which increases through COD removal. pH also increased during COD removal. 85% COD removal is obtained for the 50% dilution at an organic loading of 0.3 day‒1 on a COD basis. Completely and partially oxidized wastewaters are also treated in the activated sludge down to 30 mg/l BOD5.


Sign in / Sign up

Export Citation Format

Share Document