Fabrication of MnO2 NPs incorporated UiO-66 for the green and efficient oxidative desulfurization and denitrogenation of fuel oils

2021 ◽  
Vol 9 (3) ◽  
pp. 105179
Author(s):  
Sidra Subhan ◽  
Muhammad Yaseen ◽  
Bashir Ahmad ◽  
Zhangfa Tong ◽  
Fazle Subhan ◽  
...  
Author(s):  
Raffaele Saladino ◽  
Giorgia Botta ◽  
Marcello Crucianelli

Organosulfur compounds show a negative environmental impact because of SOx emissions by combustion of fuel oils. As a consequence, removal of sulfur is becoming a worldwide challenge. The hydrodesulfurization (HDS) process achieves limited performances in the case of refractory S-containing aromatic compounds, such as thiophene and substituted benzothiophenes (BTs), which require highly energy-demanding conditions (high temperature and pressure conditions). Oxidative desulfurization (ODS) is considered the most promising alternative to HDS. During ODS treatment, the organosulfur compounds are oxidized to corresponding sulfoxides and sulfones, which can be successively removed by extraction with polar solvents. Different stoichiometric oxidants have been used in the ODS processes with a different degree of efficacy and environmental impact. The design and development of catalytic procedures can increase the ODS energy efficiency as well as make it more economical and environmentally acceptable. Here we describe the advances in nanostructured organometallic catalysis and biotechology applied to ODS treatment.


2020 ◽  
Vol 25 (01) ◽  
pp. 24-30
Author(s):  
Deependra Tripathi ◽  
Inderpal Yadav ◽  
Himani Negi ◽  
Raj K. Singh ◽  
Vimal C. Srivastava ◽  
...  

Co(II) porphyrins have been utilized as efficient and selective catalysts for the extractive oxidative desulfurization reaction on the refractory dibenzothiophene (DBT) in [Formula: see text]-dodecane (model middle distillate fuel oil). The acetonitrile was taken as extracting polar solvent and H2O2 was used as oxidant. The reaction optimization was done with respect to DBT:catalyst molar ratio; DBT:H2O2 molar ratio; extracting solvent: CH3CN/[Formula: see text]-dodecane volume ratio; reaction temperature and time. Under the optimized conditions, a maximum of [Formula: see text]98% DBT removal was achieved by using the meso-tetrakis(4[Formula: see text] methoxyphenyl)porphyrinatocobalt(II) as catalyst under mild conditions at 50[Formula: see text]C.


Author(s):  
Adeniyi S. Ogunlaja ◽  
Zenixole R. Tshentu

Desulfurization of fuel oils is an essential process employed in petroleum refineries to reduce the sulfur concentration in fossil fuels in order to meet the mandated environmental protection limit of 10 ppm sulfur. The hydrodesulfurization (HDS) process, which is currently being employed for desulfurization, is limited in treating refractory organosulfur compounds as it only reduces sulfur content in fuels to a range of 200-500 ppm sulfur. Oxidative desulfurization (ODS) is considered a new technology for desulfurization of fuel oils as the process is capable of desulfurizing fuels to reach the ultra-low sulfur levels and can serve as a complementary step to HDS. The chapter discusses, briefly, the oxidation of refractory sulfur compounds found in fuels using vanadium as a catalyst to form organosulfones, a first step in ODS process. The chapter also discusses, in detail, the chemistry involved in molecular imprinting of organosulfones on functional polymers, and the electrospinning of the polymeric matrix to produce molecularly imprinted nanofibers employed for selective adsorption of organosulfones from the oxidized mildly hydrotreated fuels, a second step in the ODS process. Chemical interactions, apart from the imprinting effect, that can be exploited in molecularly imprinted polymers for selective extraction of organosulfones, such as hydrogen bonding, p-p interactions, van der Waals forces and electrostatic interactions, were discussed by employing density functional theory calculations. The possibilities of electrospinning on a large scale as well as prospects for future industrial applications of functional molecularly imprinted nanofibers in desulfurization are also discussed.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1557
Author(s):  
Hongsi Luo ◽  
Yulong Gu ◽  
Daqing Liu ◽  
Yinyong Sun

Catalytic oxidative desulfurization (ODS) of fuel oils is considered one of the most promising non-hydrodesulfurization technologies due to the advantages of mild reaction conditions, low cost and easy removal of aromatic sulfur compounds. Based on this reason, the preparation of highly efficient ODS catalysts has been a hot research topic in this field. Recently, metal-organic frameworks (MOFs) have attracted extensive attention due to the advantages involving abundant metal centers, high surface area, rich porosity and varied pore structures. For this, the synthesis and catalytic performance of the ODS catalysts based on MOFs materials have been widely studied. Until now, many research achievements have been obtained along this direction. In this article, we will review the advances in oxidative desulfurization of fuel oils over MOFs-based heterogeneous catalysts. The catalytic ODS performance over various types of catalysts is compared and discussed. The perspectives for future work are proposed in this field.


2015 ◽  
Vol 1090 ◽  
pp. 178-182 ◽  
Author(s):  
Hao Yang ◽  
Jian Hong Wang ◽  
Peng Wang ◽  
Hua Ling Hu ◽  
Cong Zhen Qiao ◽  
...  

A series of highly dispersed ionic liquid catalysts were prepared by immobilized acidic ionic liquid [BMIM]HSO4 in silica gel through sol-gel methods. The structures and properties of the catalysts were characterized by FT-IR, SEM and XRD. The results showed the [BMIM]HSO4 had been successfully confined or encapsulated in a silica-gel matrix.


2009 ◽  
Vol 48 (19) ◽  
pp. 9034-9039 ◽  
Author(s):  
Huaming Li ◽  
Xue Jiang ◽  
Wenshuai Zhu ◽  
Jidong Lu ◽  
Huoming Shu ◽  
...  

Author(s):  
Abdul Waheed Bhutto ◽  
Rashid Abro ◽  
Shurong Gao ◽  
Tauqeer Abbas ◽  
Xiaochun Chen ◽  
...  

2015 ◽  
Vol 1090 ◽  
pp. 183-187 ◽  
Author(s):  
Kai Peng Cheng ◽  
Hao Yang ◽  
Jian Hong Wang ◽  
Hui Peng Liu ◽  
Cong Zhen Qiao

A series of highly dispersed ionic liquid catalysts were used for the oxidation desulfurization of dibenzothiophene (DBT) in model oil in the presence of H2O2. The effects of the loading of [BMIM]HSO4immobilized, reaction time, temperature, O/S molar ratio and the dosage of catalysts on DBT removal were investigated in detail. The catalyst with the loading of [BMIM]HSO4was 25% exhibited the highest activity. The DBT removal of model oil can reach 99.9% in 5 h at 60 °C, O/S molar ratio of 10, Vmodeloil=10mL, mcatalysts=2.00g. The catalysts can be easily recycled and can be recycled 2 times without a significant decrease in activity.


2011 ◽  
Vol 32 (5) ◽  
pp. 707-715 ◽  
Author(s):  
Zongxuan JIANG ◽  
Hongying LÜ ◽  
Yongna ZHANG ◽  
Can LI

2021 ◽  
Author(s):  
John Swierk ◽  
Victoria Kompanijec

Due to adverse effects of sulfur-containing compounds present in fuel oils, there is an increasing demand for an efficient and cost-effective method of removing sulfur from oil products, such as oxidative desulfurization. In this work, a set of five materials (gold, glassy carbon, nickel, palladium and platinum) were evaluated as electrochemical catalysts for the oxidation of DBT. Electrolysis at 1.58 V was performed without water present (producing a dimer of DBT) and with the addition of 2 M water (producing DBTO). LC-MS and NMR were used to characterize the oxidation products. It was found that the Faradaic efficiencies ranged from 18.4 – 56.5% for consumption of DBT without water present and there was a correlation between higher rate constants, lower activation energies and more efficient DBT oxidation. After the addition of water, the formation of DBTO was found to have the highest selectivity when catalyzed by gold, with a Faradaic efficiency of 87.9%. The group ten metals demonstrated low Faradaic efficiencies due to the competitive water oxidation taking place. Though there were differences in the observed selectivity for DBT oxidation, all catalysts reduced the concentration of DBT in solution by similar amounts. Of the materials tested, gold served as the most selective for oxidation to DBTO, with the presence of water improving the overall reaction activity.


Sign in / Sign up

Export Citation Format

Share Document