Intensification and optimisation of nickel recovery from spent hydrogenation catalysts via ultrasound-augmented hydrometallurgy

Author(s):  
Mitchell S.W. Lim ◽  
Thomas C.K. Yang ◽  
Yeow Hong Yap ◽  
Guan-Ting Pan ◽  
Siewhui Chong ◽  
...  
Author(s):  
Q. Z. Yang ◽  
G. J. Qi ◽  
H. C. Low

The development of cost-effective and green recycling technologies for secondary metal recovery from industrial wastes is one of the new challenges on the sustainable development agenda. By incorporating cost and resource efficiency assessment into the technology innovation process, we aim to improve the sustainability of new recycling technologies by minimizing process waste, improving resource efficiency, thus reducing the recovery process cost. This paper focuses on modeling and assessing the production cost and resource use efficiency for closed-loop nickel recovery from spent hydrogenation catalysts. The engineering economics factors and process variables that affect the profitability and resource efficiency of nickel recovery are identified. They are modeled in cost and efficiency metrics. Model-based scenarios assessment revealed that compared to open-loop nickel recovery, the closed-loop concept delivers more cost-effective and greener recycling solutions. The closed-loop process cost reduction via efficient resource use and process waste minimization is in the range of 18.4% to 24.0% compared to the open-loop process option.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-243-C8-248 ◽  
Author(s):  
C. ESSELIN ◽  
E. BAUER-GROSSE ◽  
J. GOULON ◽  
C. WILLIAMS ◽  
Y. CHAUVIN ◽  
...  

Author(s):  
O. Yu. Kichigina

At production of stainless steel expensive alloying elements, containing nickel, are used. To decrease the steel cost, substitution of nickel during steel alloying process by its oxides is an actual task. Results of analysis of thermodynamic and experimental studies of nickel reducing from its oxide presented, as well as methods of nickel oxide obtaining at manganese bearing complex raw materials enrichment and practice of its application during steel alloying. Technology of comprehensive processing of complex manganese-containing raw materials considered, including leaching and selective extraction out of the solution valuable components: manganese, nickel, iron, cobalt and copper. Based on theoretical and experiment studies, a possibility of substitution of metal nickel by concentrates, obtained as a result of hydrometallurgical enrichment, was confirmed. Optimal technological parameters, ensuring high degree of nickel recovery out of the initial raw materials were determined. It was established, that for direct steel alloying it is reasonable to add into the charge pellets, consisting of nickel concentrate and coke fines, that enables to reach the through nickel recovery at a level of 90%. The proposed method of alloying steel by nickel gives a possibility to decrease considerably steel cost at the expense of application of nickel concentrate, obtained out of tails of hydrometallurgical enrichment of manganese-bearing raw materials, which is much cheaper comparing with the metal nickel.


Author(s):  
Robert B. Jordan

This third edition retains the general level and scope of earlier editions, but has been substantially updated with over 900 new references covering the literature through 2005, and 140 more pages of text than the previous edition. In addition to the general updating of materials, there is new or greatly expanded coverage of topics such as Curtin-Hammett conditions, pressure effects, metal hydrides and asymmetric hydrogenation catalysts, the inverted electron-transfer region, intervalence electron transfer, photochemistry of metal carbonyls, methyl transferase and nitric oxide synthase. The new chapter on heterogeneous systems introduces the basic background to this industrially important area. The emphasis is on inorganic examples of gas/liquid and gas/liquid/solid systems and methods of determining heterogeneity.


ChemCatChem ◽  
2021 ◽  
Author(s):  
Felix Unglaube ◽  
Carsten Robert Kreyenschulte ◽  
Esteban Mejía

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Yang ◽  
Ivan Yu. Chernyshov ◽  
Robin K. A. van Schendel ◽  
Manuela Weber ◽  
Christian Müller ◽  
...  

AbstractAny catalyst should be efficient and stable to be implemented in practice. This requirement is particularly valid for manganese hydrogenation catalysts. While representing a more sustainable alternative to conventional noble metal-based systems, manganese hydrogenation catalysts are prone to degrade under catalytic conditions once operation temperatures are high. Herein, we report a highly efficient Mn(I)-CNP pre-catalyst which gives rise to the excellent productivity (TOF° up to 41 000 h−1) and stability (TON up to 200 000) in hydrogenation catalysis. This system enables near-quantitative hydrogenation of ketones, imines, aldehydes and formate esters at the catalyst loadings as low as 5–200 p.p.m. Our analysis points to the crucial role of the catalyst activation step for the catalytic performance and stability of the system. While conventional activation employing alkoxide bases can ultimately provide catalytically competent species under hydrogen atmosphere, activation of Mn(I) pre-catalyst with hydride donor promoters, e.g. KHBEt3, dramatically improves catalytic performance of the system and eliminates induction times associated with slow catalyst activation.


2021 ◽  
Author(s):  
Israel T. Pulido-Díaz ◽  
Alejandro Serrano-Maldonado ◽  
Carlos César López-Suárez ◽  
Pedro A. Méndez-Ocampo ◽  
Benjamín Portales-Martínez ◽  
...  

RhNPs supported on mesoporous silica functionalized with nicotinamide groups provided active hydrogenation catalysts for several functional groups, wherein the shape and size of the RhNPs are maintained after catalysis.


Sign in / Sign up

Export Citation Format

Share Document