Simultaneous adsorption of methylene blue and heavy metals from water using Zr-MOF having free carboxylic group

Author(s):  
Madhu N Nimbalkar ◽  
Badekai Ramachandra Bhat
2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Buhani ◽  
Tri Agus Wijayanti ◽  
Suharso ◽  
Sumadi ◽  
Muslim Ansori

AbstractBiomass of algae is a very potent adsorbent for absorbing aqueous waste containing heavy metals and organic dyes. This study purposes to confirm the ability of adsorbents from green algae Nannochloropsis sp. modified with silica (ASN) and followed by coating magnetite particles (ASN-MPs) to absorb simultaneously the mixture of Methylene Blue (ME) and Cu(II) cations in aqueous solution. Simultaneous sorption of ME and Cu(II) cations to ASN and ASN-MPs was carried out by the batch method with the interaction pH condition 7, contact time 90 min, and initial concentrations of ME and Cu(II) cations (0.1–1.0 mM). Based on adsorption data, Cu(II) cations have a greater adsorption rate and capacity (qm) compared to ME at the same contact time and initial concentration. The adsorption capacity (qm) values of the bi-component ME and Cu(II) cation mixture in ASN and ASN-MPs were 1.39 × 10− 1 and 5.32 × 10− 1 mmol g− 1, respectively, with the binary Langmuir adsorption isotherm constant for Cu(II) cations greater than ME. Modified adsorbent from algae Nannochloropsis sp. with silica matrix and magnetite particle coating is an adsorbent that has a high effectiveness in the collective sorption of ME and Cu(II) cations. Therefore, these adsorbents can be used for the adsorption of cation mixtures of heavy metals and organic dyes that are cationic in solution.


2013 ◽  
Vol 2 (1) ◽  
pp. 150 ◽  
Author(s):  
Jamil Rima ◽  
Karine Assaker

<p>In this study, B-Cyclodextrinn polymerized with beetroot fibers (Bio-polymer), was prepared and applied to the removal of organic and inorganic contaminants from wastewater. An investigation into the use of cross-linked cyclodextrin polyurethanes copolymerised with beetroot fibers as adsorbents for organic pollutants and heavy metals has yielded very useful results which may have an impact in future water treatment applications.</p> The Biopolymer was tested in water contaminated by dyes, polycyclic aromatic hydrocarbons (PAH) and heavy metals. The effectiveness to eliminate dyes such as methylene blue and Rhodamine B with concentrations around 100 ppm was more than 99%, while the pyrene,which was chosen as an example among PAHs, showed a potential of elimination exceeding the 97% for solutions of 10 ppm. Also, heavy metals, such as Lead, Zn, and Cu, were tested and showed an efficacy exceeding the 99.8%. The results indicated that the biopolymer developed in this study has the potential to be a promising material for the removal of mixed pollutants from industrial wastewater or from contaminated groundwater.


2018 ◽  
Vol 53 (11) ◽  
pp. 1678-1688 ◽  
Author(s):  
Junhua Yan ◽  
Guihong Lan ◽  
Haiyan Qiu ◽  
Chao Chen ◽  
Yongqiang Liu ◽  
...  

2021 ◽  
Vol 255 ◽  
pp. 117486
Author(s):  
Muhammad Usman ◽  
Adeel Ahmed ◽  
Bing Yu ◽  
Song Wang ◽  
Youqing Shen ◽  
...  

2020 ◽  
Vol 249 ◽  
pp. 116841
Author(s):  
Niklas Wahlström ◽  
Sophie Steinhagen ◽  
Gunilla Toth ◽  
Henrik Pavia ◽  
Ulrica Edlund

2019 ◽  
Vol 282 ◽  
pp. 179-187 ◽  
Author(s):  
Shi-Wen Lv ◽  
Jing-Min Liu ◽  
Hui Ma ◽  
Zhi-Hao Wang ◽  
Chun-Yang Li ◽  
...  

2017 ◽  
Vol 13 ◽  
pp. 190-196
Author(s):  
Kristina K. Abdugaffarova ◽  
Maksim V. Dorogov ◽  
Anatolii A. Vikarchuk ◽  
Vlada V. Zabolotskikh ◽  
Vladislav S. Firsov

This article presents the results of experimental obtaining together with tests of modifications of the granulated sorption aluminosilicate-based material. The chemical composition, structure and morphology of a surface of the obtained modifications of sorbents from clay have been explored. Through a complex of modern physical methods it is established that porosity and a specific surface of clay-based sorbents increased as a result of modification. Pilot studies have shown higher efficiency of new aluminosilicate-based sorbents in comparison with absorbent carbon during sorption of such model pollutants as methylene blue, phenol and ions of heavy metals. Modifications of sorbent which can be effectively used for post treatment of wastewater are revealed.


2021 ◽  
Author(s):  
Buhani ◽  
Tri Agus Wijayanti ◽  
Suharso ◽  
Sumadi ◽  
Muslim Ansori

Abstract Biomass of algae is a very potent adsorbent for absorbing liquid waste containing heavy metals and organic dyes. This study purposes to confirm the ability of adsorbents from green algae Nannochloropsis sp. modified with silica (ASN) and followed by coating magnetite particles (ASN-MPs) to absorb simultaneously the mixture of methylene blue (ME) and Cu(II) cations in aqueous solution. Simultaneous sorption of ME and Cu(II) cations to ASN and ASN-MPs was carried out by the Batch method with the interaction pH condition 7, contact time 90 minutes, and initial concentrations of ME and Cu(II) cations (0.1 - 1.0 mmol L-1). Based on adsorption data, Cu(II) cations have a greater adsorption rate and capacity (qm) compared to ME at the same contact time and initial concentration. The adsorption capacity (qm) values of the bi-component ME and Cu(II) cation mixture in ASN and ASN-MPs were 1.385 x 10-1 and 5,319 x 10-1 mmolequiv g-1, respectively, with the binary Langmuir adsorption isotherm constant for Cu(II) cations greater than ME. Modified adsorbent from algae Nannochloropsis sp. with silica matrix and magnetite particle coating, is an adsorbent that has a high effectiveness in the collective sorption of ME and Cu(II) cations. Therefore, these adsorbents can be used for the adsorption of cation mixtures of heavy metals and organic dyes that are cationic in solution.


Sign in / Sign up

Export Citation Format

Share Document