Fabrication of superwetting and antimicrobial wood-based mesoporous composite decorated with silver nanoparticles for purifying the polluted-water with oils, dyes and bacteria

Author(s):  
Xiling Du ◽  
Lei Shi ◽  
Jiuyin Pang ◽  
Huiwen Zheng ◽  
Junyou Shi ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (67) ◽  
pp. 39187-39200 ◽  
Author(s):  
Azza Shokry ◽  
Ayman El Tahan ◽  
Hesham Ibrahim ◽  
Moataz Soliman ◽  
Shaker Ebrahim

The aim is to develop a ternary nanocomposite of polyaniline/2-acrylamido-2-methylpropanesulfonic acid-capped silver nanoparticles/graphene oxide quantum dots as an efficient adsorbent for the removal of the highly toxic hexavalent chromium (Cr(vi)) from polluted water.


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 181 ◽  
Author(s):  
Doaa Safwat Mohamed ◽  
Rehab Mahmoud Abd El-Baky ◽  
Tim Sandle ◽  
Sahar A. Mandour ◽  
Eman Farouk Ahmed

Silver is a potent antimicrobial agent against a variety of microorganisms and once the element has entered the bacterial cell, it accumulates as silver nanoparticles with large surface area causing cell death. At the same time, the bacterial cell becomes a reservoir for silver. This study aims to test the microcidal effect of silver-killed E. coli O104: H4 and its supernatant against fresh viable cells of the same bacterium and some other species, including E. coli O157: H7, Multidrug Resistant (MDR) Pseudomonas aeruginosa and Methicillin Resistant Staphylococcus aureus (MRSA). Silver-killed bacteria were examined by Transmission Electron Microscopy (TEM). Agar well diffusion assay was used to test the antimicrobial efficacy and durability of both pellet suspension and supernatant of silver-killed E. coli O104:H4 against other bacteria. Both silver-killed bacteria and supernatant showed prolonged antimicrobial activity against the tested strains that extended to 40 days. The presence of adsorbed silver nanoparticles on the bacterial cell and inside the cells was verified by TEM. Silver-killed bacteria serve as an efficient sustained release reservoir for exporting the lethal silver cations. This promotes its use as a powerful disinfectant for polluted water and as an effective antibacterial which can be included in wound and burn dressings to overcome the problem of wound contamination.


2019 ◽  
Vol 89 (23-24) ◽  
pp. 5096-5107
Author(s):  
Yajie Ding ◽  
Chong Zhang ◽  
Guoqiang Cai ◽  
Ke Xu ◽  
Jindan Wu ◽  
...  

Water scarcity and pollution has become one of the most serious problems in the world. Generally, both oils and microorganisms exist in polluted water, hence multi-functional materials for the removal of diverse substances from water are desired. We reported a facile method for preparing cotton fabric possessing hybrid poly(sodium methacrylate) (pNaMAA)/silver nanoparticles (AgNPs) for oil/water separation and water disinfection. A crosslinked pNaMAA layer was generated on the cotton surface by ultraviolet-initiated polymerization. By replacing Na+in pNaMAA molecules, Ag+was incorporated into the fabric and then was reduced to AgNPs in situ by photo-thermal reduction. Due to the high underwater oleophobicity and bactericidal effect of the pNaMAA/AgNP hybrid layer, the gravity-driven oil/water separation efficiency of the prepared fabric was higher than 99% and the bacteria killing ratio achieved nearly 100%. Furthermore, AgNPs exhibited relatively good fastness during application. Combining their excellent oil removal and water disinfection effectiveness, these textile-based materials provide a promising future in the field of point-of-use water purification.


RSC Advances ◽  
2020 ◽  
Vol 10 (36) ◽  
pp. 21636-21642 ◽  
Author(s):  
Ming Zhang ◽  
Chengyu Wang ◽  
Yinghua Ma ◽  
Xiling Du ◽  
Yanhua Shi ◽  
...  

In order to remove/collect organic contaminants from polluted water, polypyrrole/silver nanoparticles (PPy/Ag NPs) have been loaded onto spandex fabric using the method of in situ redox-oxidation polymerization to achieve a specific membrane.


2019 ◽  
Vol 107 (3) ◽  
pp. 305
Author(s):  
Mengmei Geng ◽  
Yuting Long ◽  
Tongqing Liu ◽  
Zijuan Du ◽  
Hong Li ◽  
...  

Surface-enhanced Raman Scattering (SERS) fiber probe provides abundant interaction area between light and materials, permits detection within limited space and is especially useful for remote or in situ detection. A silver decorated SERS fiber optic probe was prepared by hydrothermal method. This method manages to accomplish the growth of silver nanoparticles and its adherence on fiber optic tip within one step, simplifying the synthetic procedure. The effects of reaction time on phase composition, surface plasmon resonance property and morphology were investigated by X-ray diffraction analysis (XRD), ultraviolet-visible absorption spectrum (UV-VIS absorption spectrum) and scanning electron microscope (SEM). The results showed that when reaction time is prolonged from 4–8 hours at 180 °C, crystals size and size distribution of silver nanoparticles increase. Furthermore, the morphology, crystal size and distribution density of silver nanoparticles evolve along with reaction time. A growth mechanism based on two factors, equilibrium between nucleation and growth, and the existence of PVP, is hypothesized. The SERS fiber probe can detect rhodamin 6G (R6G) at the concentration of 10−6 M. This SERS fiber probe exhibits promising potential in organic dye and pesticide residue detection.


2019 ◽  
Vol 25 (1) ◽  
Author(s):  
GAJRAJ PANDEY ◽  
S.N. CHAUBEY ◽  
N.K. SRIVASTAVA

Sewage effluents were studied in polluted water including toxic damages on the flora of the area of Azamgarh district of Uttar Pradesh, India.


Sign in / Sign up

Export Citation Format

Share Document