The concentration field during transient natural convection between vertical electrodes in a small-aspect-ratio cell

2008 ◽  
Vol 613 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Xuegeng Yang ◽  
Kerstin Eckert ◽  
Armin Heinze ◽  
Margitta Uhlemann
Volume 1 ◽  
2004 ◽  
Author(s):  
Mandar V. Joshi ◽  
U. N. Gaitonde ◽  
Sushanta K. Mitra

A semi-analytical method for natural convection in a two dimensional rectangular enclosure, with uniform volumetric heat generation, having insulated horizontal boundaries, and isothermal vertical boundaries, has been studied here. In this method, the governing equations for natural convection, have been solved under the assumption that for a cavity with small aspect ratio, the flow in the central region of the cavity is only in the vertical direction. It is found that for the cavities with small aspect ratio, the temperature in central region of the cavity is nearly constant along the horizontal direction. However, there is a uniform temperature gradient in the vertical direction, which can be related to the maximum temperature in conduction. The velocity profiles and temperature profiles obtained in the present work, are compared with the numerical simulations by Fluent and a fair agreement is found between these results.


1974 ◽  
Vol 65 (2) ◽  
pp. 209-229 ◽  
Author(s):  
D. E. Cormack ◽  
L. G. Leal ◽  
J. Imberger

The problem of natural convection in a cavity of small aspect ratio with differentially heated end walls is considered. It is shown by use of matched asymptotic expansions that the flow consists of two distinct regimes: a parallel flow in the core region and a second, non-parallel flow near the ends of the cavity. A solution valid at all orders in the aspect ratio A is found for the core region, while the first several terms of the appropriate asymptotic expansion are obtained for the end regions. Parametric limits of validity for the parallel flow structure are discussed. Asymptotic expressions for the Nusselt number and the single free parameter of the parallel flow solution, valid in the limit as A → 0, are derived.


1991 ◽  
Vol 113 (3) ◽  
pp. 635-642 ◽  
Author(s):  
D. A. Olson ◽  
L. R. Glicksman

Transient natural convection at Rayleigh numbers of 1010 was studied experimentally in two enclosures of aspect ratio 1/3, one a 1:5.5 physical scale model containing the dense refrigerant gas R114, and the second a full-scale room containing air. In one type of transient the vertical endwall temperature was suddenly changed, while in a second type of transient the isothermal, well-mixed gas was suddenly exposed to hot and cold vertical endwalls. The experiments indicated that the dominant time constant was a convective one. Comparisons between the scale model and full scale show that R114 gas can simulate the transient behavior of air-filled enclosures.


1992 ◽  
Vol 114 (3) ◽  
pp. 250-254 ◽  
Author(s):  
P. Vadasz

The analytical solution to the natural convection problem in a rotating rectangular porous domain is presented for a small aspect ratio of the domain. The convection results from differential heating of the horizontal walls leading to temperature gradients orthogonal to the centrifugal body force. The solution to the nonlinear set of partial differential equations was obtained through an asymptotic expansion of the dependent variables in terms of a small parameter representing the aspect ratio of the domain. The convection regime is apparent in the results, although it has a weak effect on the mean heat flux.


2020 ◽  
Vol 117 (6) ◽  
pp. 615
Author(s):  
Ping Shen ◽  
Lei Zhou ◽  
Qiankun Yang ◽  
Zhiqi Zeng ◽  
Kenan Ai ◽  
...  

In 38MnVS6 steel, the morphology of sulfide inclusion has a strong influence on the fatigue life and machinability of the steel. In most cases, the MnS inclusions show strip morphology after rolling, which significantly affects the steel quality. Usually, the MnS inclusion with a spherical morphology is the best morphology for the steel quality. In the present work, tellurium was applied to 38MnVS6 micro-alloyed steel to control the MnS inclusion. Trace tellurium was added into 38MnVS6 steel and the effect of Te on the morphology, composition, size and distribution of MnS inclusions were investigated. Experimental results show that with the increase of Te content, the equivalent diameter and the aspect ratio of inclusion decrease strikingly, and the number of inclusions with small aspect ratio increases. The inclusions are dissociated and spherized. The SEM-EDS analysis indicates that the trace Te mainly dissolves in MnS inclusion. Once the MnS is saturated with Te, MnTe starts to generate and wraps MnS. The critical Te/S value for the formation of MnTe in the 38MnV6 steel is determined to be approximately 0.075. With the increase of Te/S ratio, the aspect ratio of MnS inclusion decreases and gradually reaches a constant level. The Te/S value in the 38MnVS6 steel corresponding to the change of aspect ratio from decreasing to constant ranges from 0.096 to 0.255. This is most likely to be caused by the saturation of Te in the MnS inclusion. After adding Te in the steel, rod-like MnS inclusion is modified to small inclusion and the smaller the MnS inclusion, the lower the aspect ratio.


Sign in / Sign up

Export Citation Format

Share Document