Putrescine oxidase/peroxidase-co-immobilized and mediator-less mesoporous microelectrode for diffusion-controlled steady-state amperometric detection of putrescine

2017 ◽  
Vol 804 ◽  
pp. 128-132 ◽  
Author(s):  
Hong-qi Xia ◽  
Yuki Kitazumi ◽  
Osamu Shirai ◽  
Hirokazu Ohta ◽  
Shin Kurihara ◽  
...  
1963 ◽  
Vol 2 (2) ◽  
Author(s):  
Ralph N. Schindler

SummaryTheEthane formation in pure irradiated ethyl iodide occurs to only 50% by reactions under steady state conditions. The residual ethane results from diffusion controlled reactions in spurs. "Hot" processes are found to be of minor importance. Ethylene and butane production occurs in the spurs exclusively. The upper limit for ethylene formation via unimolecular elimination is estimated to G < 0.9.


Fractals ◽  
1995 ◽  
Vol 03 (02) ◽  
pp. 251-267 ◽  
Author(s):  
T. GREGORY DEWEY

The effect of time-dependent diffusional rate constants on chemically-controlled reactions in solution is considered. A general mechanism is examined that consists of a two step process. First the reactants diffuse together to form an “encounter complex.” This is followed by the collapse of the complex to the final product. The first step is diffusion controlled and the second step is chemically controlled. For reactions in restricted geometries or on fractals the rate constants associated with the diffusive process will scale with time as t−h where h is a constant between 0 and 1. The chemical processes are assumed to have time-independent rate constants. For reactions in which the encounter complex achieves a steady state, the differential equations governing the time course of the reaction can be solved exactly. At short times, the concentration of the reactants decays exponentially, reflecting the time constant of the chemical processes. At longer times, the decreasing diffusive rate constants result in the process being diffusion controlled. A stretched exponential of the form, exp{−kt1−h}, is observed. Approximate solutions for the pre-steady state behavior of the system are also determined using a Liouville transformation and corresponding asymptotic expansions. The short time regime shows power law decays of reactants. These decays will depend both on the dimensionality of the system as well as on the value of the rate constants associated with individual steps in the mechanism. Conditions can exist where a transformation to logarithmic oscillations will occur. Using this theoretical foundation a model is developed to analyze the kinetics of hydrogen isotope exchange kinetics in proteins. The exchange reaction is assume to occur in the boundary volume of the protein. Using the predicted fractal dimension of this boundary volume, scaling exponents are calculated and used as an unadjusted parameter. Highly accurate fits to the experimental data are achieved and activation energies are obtained that reflect the energetics of isotope exchange. This approach allows chemical kinetic behavior to be predicted from X-ray structure information.


Solid Earth ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 93-135 ◽  
Author(s):  
Paula Ogilvie ◽  
Roger L. Gibson

Abstract. Coronas, including symplectites, provide vital clues to the presence of arrested reaction and preservation of partial equilibrium in metamorphic and igneous rocks. Compositional zonation across such coronas is common, indicating the persistence of chemical potential gradients and incomplete equilibration. Major controls on corona mineralogy include prevailing pressure (P), temperature (T) and water activity (aH2O) during formation, reaction duration (t) single-stage or sequential corona layer growth; reactant bulk compositions (X) and the extent of metasomatic exchange with the surrounding rock; relative diffusion rates for major components; and/or contemporaneous deformation and strain. High-variance local equilibria in a corona and disequilibrium across the corona as a whole preclude the application of conventional thermobarometry when determining P–T conditions of corona formation, and zonation in phase composition across a corona should not be interpreted as a record of discrete P–T conditions during successive layer growth along the P–T path. Rather, the local equilibria between mineral pairs in corona layers more likely reflect compositional partitioning of the corona domain during steady-state growth at constant P and T. Corona formation in pelitic and mafic rocks requires relatively dry, residual bulk rock compositions. Since most melt is lost along the high-T prograde to peak segment of the P–T path, only a small fraction of melt is generally retained in the residual post-peak assemblage. Reduced melt volumes with cooling limit length scales of diffusion to the extent that diffusion-controlled corona growth occurs. On the prograde path, the low melt (or melt-absent) volumes required for diffusion-controlled corona growth are only commonly realized in mafic igneous rocks, owing to their intrinsic anhydrous bulk composition, and in dry, residual pelitic compositions that have lost melt in an earlier metamorphic event. Experimental work characterizing rate-limiting reaction mechanisms and their petrogenetic signatures in increasingly complex, higher-variance systems has facilitated the refinement of chemical fractionation and partial equilibration diffusion models necessary to more fully understand corona development. Through the application of quantitative physical diffusion models of coronas coupled with phase equilibria modelling utilizing calculated chemical potential gradients, it is possible to model the evolution of a corona through P–T–X–t space by continuous, steady-state and/or sequential, episodic reaction mechanisms. Most coronas in granulites form through a combination of these endmember reaction mechanisms, each characterized by distinct textural and chemical potential signatures with very different petrogenetic implications. An understanding of the inherent petrogenetic limitations of a reaction mechanism model is critical if an appropriate interpretation of P–T evolution is to be inferred from a corona. Since corona modelling employing calculated chemical potential gradients assumes nothing about the sequence in which the layers form and is directly constrained by phase compositional variation within a layer, it allows far more nuanced and robust understanding of corona evolution and its implications for the path of a rock in P–T–X space.


Author(s):  
T. Chen ◽  
I. Dutta ◽  
S. Jadhav

The creep behavior of Sn1Ag0.5Cu, Sn2.5Ag1Cu and Sn4Ag0.5Cu ball grid array (BGA) solder balls and 99.99% pure polycrystalline Sn bulk was studied using impression creep. The microstructures of the as-reflowed solders was characterized. It was found that SnAgCu solders consist of primary dendrites/grains of β-Sn, and a eutectic microconstituent comprising fine Ag3Sn and Cu6Sn5 particles in β. With increasing concentrations of Ag and Cu in the alloy, the proportion of the eutectic microconstituent in relation to the primary β phase increases. In pure Sn and Sn-1Ag-0.5Cu, the β grains form the continuous matrix, whereas in Sn2.5Ag1Cu and Sn4Ag0.5Cu, the eutectic microconstituent forms a continuous network around the β grains, which form isolated islands within the eutectic. The steady state creep behavior of the alloys was dominated by the response of the continuous microstructural constituent (β-Sn or solid solution β for pure Sn and Sn1Ag0.5Cu, and the eutectic microconstituent for Sn2.5Ag0.5Cu and Sn4Ag0.5Cu). In general, the steady-state creep rate decreased with increased alloy content, and in particular, the volume fraction of Ag3Sn and Cu6Sn5 precipitates. The rate-limiting creep mechanism in all the materials investigated here was core diffusion controlled dislocation climb. However, subtle changes in the stress exponent n and activation energy Q were observed. Pure Sn shows n = 5, Q = 42kJ/mole, Sn1Ag0.5Cu shows n = 5, Q = 61kJ/mole, whereas both Sn2.5Ag1Cu and Sn4Ag0.5Cu show n = 6 and Q = 61kJ/mole. Rationalizations for the observed changes of n and Q are provided, based on the influence of the microstructure and the solute concentrations.


2002 ◽  
Vol 117 (6) ◽  
pp. 2987-2988 ◽  
Author(s):  
I. V. Gopich ◽  
A. M. Berezhkovskii ◽  
Attila Szabo

1997 ◽  
Vol 89 (1-2) ◽  
pp. 369-377
Author(s):  
C. A. Condat ◽  
G. J. Sibona ◽  
C. E. Budde

Sign in / Sign up

Export Citation Format

Share Document