Application of electrochemical noise (EN) technology to evaluate the passivation performances of adsorption and film-forming type corrosion inhibitors

2019 ◽  
Vol 855 ◽  
pp. 113584 ◽  
Author(s):  
Jun Cui ◽  
Dayang Yu ◽  
Ziwei Long ◽  
Beidou Xi ◽  
Xiaosong He ◽  
...  
Coatings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 12 ◽  
Author(s):  
Paola Roncagliolo Barrera ◽  
Francisco Rodríguez Gómez ◽  
Esteban García Ochoa

Cast iron has stood for centuries of invention. It is a very versatile and durable material. Coating systems are a low-maintenance protection method. The purpose of this research is to increase the Paraloid coating’s resistance when applied to iron in high humidity atmospheres, with the addition of caffeine (1,3,7-dimethylxanthine) and nicotine (S)-3-(1-methylpyrrolidin-2-yl) pyridine as corrosion inhibitors; the resistance of protection versus exposure time will be evaluated by using electrochemical noise. A statistical analysis of the electrochemical noise signals was carried out. Recurrence plots were used as a powerful tool in the analysis to complement the data obtained and they predicted the evaluation of coatings behaviors performance versus time. The outcomes show that the addition of inhibitors increases and improves the performance as a temporary protection of Paraloid and that protection in high relative humidity was improved. Recurrence plots and parameter quantification show the variances in the surface corrosion dynamics.


2021 ◽  
Author(s):  
Douglas J Mills ◽  
Joshua Zatland ◽  
Nicola M Everitt

Abstract ‘Green’ corrosion inhibitors derived from plant materials provide environmentally friendly alternatives to conventional corrosion inhibitors. They are also much cheaper if using a biomass waste stream or abundant plant material as the source material. There are many examples in literature of different trials, from henna leaves to celery seeds to banana peel. Although it is known that extracts contain electron-rich polar atoms such as N, O, S and P which make them potentially effective inhibitors, it is difficult to predict on a molecular basis what will work well and what will not, since many interacting factors may be at play in complementary interactions. To assist in predicting the inhibition efficiency of inhibitors under varying conditions and choosing the most effective, what is needed is a short-term test which will obviate the need for tedious weight loss experiments. The Electrochemical Noise Method (ENM) uses the natural fluctuations which arise during electrochemical activity to gain information about the corrosion process. Using ENM is quick and non-intrusive method which makes it ideal for screening. Hence a rig has been designed and manufactured which allows for measurement to be made in stirred as well as static conditions and minimises the occurrence of crevice corrosion at the electrodes. Crevice corrosion is a hazard for ENM electrodes when trying to make a comparison with corrosion inhibition calculated using the standard weight loss measurement after immersion (WLM) method. For these preliminary trials we are exploring corrosion of mild steel in HCl in both stirred and unstirred conditions at room temperature. Results are presented comparing ENM measurements with conventional WLM for both Propargyl Alcohol (a conventional industrial corrosion inhibitor) and broccoli extract. Our results suggest that stirring does not make any difference to the noise measured in ENM. The amount of material lost calculated by ENM and WLM (Rn and weight loss values) can be directly compared and show close comparison. It seems likely that as a way of assessing inhibitors quickly (which is particularly important in the testing of "green" inhibitors) that this ENM approach has a lot to offer.


2019 ◽  
Vol 21 (1) ◽  
pp. 20-23
Author(s):  
Katarzyna Przywecka ◽  
Barbara Grzmil ◽  
Krzysztof Kowalczyk

Abstract Many studies have been carried out in the direction of improvement of the effectiveness of commonly utilized phosphate corrosion inhibitors. For this purpose various types of modifications are realized, e.g. introduction of different cations to the pigment composition or replacement of phosphate anions with others. In the presented work, anticorrosive pigments containing calcium hydrogen phosphate, and/or calcium hydroxyphosphate, and calcium molybdate were obtained. The phase and chemical composition and the oil absorption number of those materials were determined. The anticorrosive properties were investigated by an electrochemical noise method. The obtained results were compared with previously published studies concerning pigments containing (NH4)3Al2(PO4)3 and/or AlPO4, and CaMoO4. It was found that the pigment containing only calcium molybdate(VI) is not an effective corrosion inhibitor. However, the pigments comprising a mixture of CaHPO4 and CaMoO4 exhibited good anticorrosive properties and they were characterized by higher effectiveness in the corrosion protection than compared materials.


2017 ◽  
Author(s):  
R. B. Rabelo ◽  
F. C. De Rezende ◽  
O. C. Poltronieri ◽  
C. G. Ewbank ◽  
J. A. Velasco ◽  
...  

1992 ◽  
Vol 139 (3) ◽  
pp. 706-711 ◽  
Author(s):  
C. Monticelli ◽  
G. Brunoro ◽  
A. Frignani ◽  
G. Trabanelli

Author(s):  
Kheira Gharbi ◽  
Samira Chouicha ◽  
Malcolm Andrew Kelland

AbstractCorrosion is considered one of the major problems that affect flow assurance during hydrocarbon production. This irreversible phenomenon has the ability to cause serious material failure in the oil and gas industry. Consequently, heavy capital and operational costs are required to prevent corrosion processes. Sweet corrosion of raw gas production facilities in an Algerian gas field manifests inside surface installations, which leads to gas production interruption and high intervention costs. To mitigate this type of corrosion, many methods can be applied such as the selection of appropriate materials, the injection of inhibitors, and the use of protective coating. In this work, the main points of gas production system that have been affected by corrosion and the inspection techniques used in the studied field were reviewed. Moreover, the efficiency of two types of two corrosion inhibitors (film-forming/neutralizing and film-forming chemicals) was studied by measuring the corrosion rate in the field and conducting chemical analyses on the produced water samples in the laboratory. The results of laboratory analyses regarding pH and iron content measurement point out that the injection of film-forming/neutralizing chemical significantly shifted the pH of the medium from acid to more neutral value and decreased the iron content, while the injection of film-forming inhibitor affected only the iron content by decreasing its tenor in the water samples. These results confirm the functions of each inhibitor to protect metal against internal corrosion. The comparison between the single- and double-function inhibitors reveals that the film-forming inhibitor (CK981DZ) outperforms the film-forming/ neutralizing chemical with an efficiency that exceeds 99% at low injection rate. Moreover, it provides good compatibility and stability all through its injection path. Meanwhile, the application of double function inhibitor (film-forming/neutralizing) significantly reduced the corrosion rate of carbon steel structures, but it involved the formation of deposits in the gas processing plant. The findings from this study can help give a better understanding of the methodology of corrosion inhibitor performance evaluation in real condition of gas production, also the criteria of inhibitor screening based on laboratory and field tests.


Sign in / Sign up

Export Citation Format

Share Document