Blended pulp mill, forest humus and mine residual material Technosols for mine reclamation: A growth-chamber study to explore the role of physiochemical properties of substrates and microbial inoculation on plant growth

2018 ◽  
Vol 228 ◽  
pp. 93-102 ◽  
Author(s):  
Asma Asemaninejad ◽  
Jessica Arteaga ◽  
Graeme Spiers ◽  
Peter Beckett ◽  
Samantha McGarry ◽  
...  
HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 680a-680
Author(s):  
W.A. Bergfield ◽  
D.N. Sasseville ◽  
R.J. Kremer

The fungicide benomyl (formulated as Benlate 50 DF) has been implicated in damage to several crops grown under warm, moist conditions. Although the target pathogen may be controlled, occurrence of population shifts in rhizosphere bacteria has been documented, with benomyl application. A growth chamber study to investigate the effects of benomyl on marigold (Tagetes patula) and subsequent effects on the populations of rhizosphere bacteria of marigold was performed. A one pound per one hundred gallon rate as foliar and drench treatments were applied to marigolds. Plant growth data and rhizosphere bacteria populations were recorded. Repeated application of the benomyl treatments significantly reduced the marigold root and shoot mass, 44% and 67% respectively, compared to controls. Repeated foliar applications of benomyl also resulted in necrotic lesions on marigold leaf margins. Rhizosphere bacteria total numbers differed between treatments, having a greater population for the drench rate than the foliar rate. These results suggest application of benomyl may have harmful nontarget effects, leading to production problems associated with its use.


HortScience ◽  
2014 ◽  
Vol 49 (9) ◽  
pp. 1217-1224 ◽  
Author(s):  
William C. Kreuser ◽  
Frank S. Rossi

Petroleum-derived spray oils (PDSOs) have been used for pest management in horticulture and agronomy for over a century. Civitas™ is a new PDSO designed for use in the turfgrass industry. It is commonly mixed with low rates of pesticides to reduce the environmental impact and improve plant stress tolerance. Civitas can cause phytotoxicity, which has limited its acceptance by the turfgrass industry. Civitas is mixed with a green pigment called Harmonizer™ to sustain acceptable turfgrass color. A field study and a growth chamber study were designed to quantify phytotoxicity, understand the role of Harmonizer, and isolate the cause of Civitas-induced phytotoxicity. Civitas, Harmonizer, their combination (Two-Pack), and a water-only control were applied to a research putting surface in Ithaca, NY, during 2012 and 2013. Civitas and Harmonizer were applied every 2 weeks at the rates of 5.0 and 0.3 mL·m−2, respectively. Visual turfgrass quality rating and canopy temperature were quantified several times weekly. Civitas caused chlorosis and decline in visual quality during both years. Harmonizer masked chlorosis but did not prevent a drop in stand density during the second field season. Treatments were replicated on annual bluegrass (Poa annua L.) in a growth chamber experiment. Civitas did not increase electrolyte leakage or alter the composition of cuticle; however, there were signs of oil persistence on the leaves and stomata and evidence of reduced gas exchange. Chlorosis resulting from oil persistence and reduced gas exchange is consistent with chronic PDSO phytotoxicity. This research demonstrated the potential for phytotoxicity with high rates of Civitas. Lower application rates likely reduce the potential for phytotoxicity but may also minimize the pest control benefits associated with the product.


2021 ◽  
Vol 759 (1) ◽  
pp. 012025
Author(s):  
R Simarmata ◽  
Nuriyanah ◽  
L Nurjanah ◽  
J R L Sylvia ◽  
T Widowati

Plant Gene ◽  
2021 ◽  
Vol 26 ◽  
pp. 100283
Author(s):  
M. Iqbal R. Khan ◽  
Syed Uzma Jalil ◽  
Priyanka Chopra ◽  
Himanshu Chhillar ◽  
Antonio Ferrante ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 371
Author(s):  
Emily Medina ◽  
Su-Hwa Kim ◽  
Miriam Yun ◽  
Won-Gyu Choi

In natural ecosystems, plants are constantly exposed to changes in their surroundings as they grow, caused by a lifestyle that requires them to live where their seeds fall. Thus, plants strive to adapt and respond to changes in their exposed environment that change every moment. Heat stress that naturally occurs when plants grow in the summer or a tropical area adversely affects plants’ growth and poses a risk to plant development. When plants are subjected to heat stress, they recognize heat stress and respond using highly complex intracellular signaling systems such as reactive oxygen species (ROS). ROS was previously considered a byproduct that impairs plant growth. However, in recent studies, ROS gained attention for its function as a signaling molecule when plants respond to environmental stresses such as heat stress. In particular, ROS, produced in response to heat stress in various plant cell compartments such as mitochondria and chloroplasts, plays a crucial role as a signaling molecule that promotes plant growth and triggers subsequent downstream reactions. Therefore, this review aims to address the latest research trends and understandings, focusing on the function and role of ROS in responding and adapting plants to heat stress.


2021 ◽  
pp. 126809
Author(s):  
Sayanta Mondal ◽  
Krishnendu Pramanik ◽  
Sudip Kumar Ghosh ◽  
Priyanka Pal ◽  
Tanushree Mondal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document