Salinity is the major driver of the global eukaryotic community structure in fish-canning wastewater treatment plants

2021 ◽  
Vol 290 ◽  
pp. 112623
Author(s):  
David Correa-Galeote ◽  
Alba Roibás ◽  
Anuska Mosquera-Corral ◽  
Belén Juárez-Jiménez ◽  
Jesús González-López ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Young Kyung Kim ◽  
Keunje Yoo ◽  
Min Sung Kim ◽  
Il Han ◽  
Minjoo Lee ◽  
...  

Abstract Bacterial communities in wastewater treatment plants (WWTPs) affect plant functionality through their role in the removal of pollutants from wastewater. Bacterial communities vary extensively based on plant operating conditions and influent characteristics. The capacity of WWTPs can also affect the bacterial community via variations in the organic or nutrient composition of the influent. Despite the importance considering capacity, the characteristics that control bacterial community assembly are largely unknown. In this study, we discovered that bacterial communities in WWTPs in Korea and Vietnam, which differ remarkably in capacity, exhibit unique structures and interactions that are governed mainly by the capacity of WWTPs. Bacterial communities were analysed using 16S rRNA gene sequencing and exhibited clear differences between the two regions, with these differences being most pronounced in activated sludge. We found that capacity contributed the most to bacterial interactions and community structure, whereas other factors had less impact. Co-occurrence network analysis showed that microorganisms from high-capacity WWTPs are more interrelated than those from low-capacity WWTPs, which corresponds to the tighter clustering of bacterial communities in Korea. These results will contribute to the understanding of bacterial community assembly in activated sludge processing.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Shuang Xu ◽  
Junqin Yao ◽  
Meihaguli Ainiwaer ◽  
Ying Hong ◽  
Yanjiang Zhang

Activated sludge bulking is easily caused in winter, resulting in adverse effects on effluent treatment and management of wastewater treatment plants. In this study, activated sludge samples were collected from different wastewater treatment plants in the northern Xinjiang Uygur Autonomous Region of China in winter. The bacterial community compositions and diversities of activated sludge were analyzed to identify the bacteria that cause bulking of activated sludge. The sequencing generated 30087–55170 effective reads representing 36 phyla, 293 families, and 579 genera in all samples. The dominant phyla present in all activated sludge were Proteobacteria (26.7–48.9%), Bacteroidetes (19.3–37.3%), Chloroflexi (2.9–17.1%), and Acidobacteria (1.5–13.8%). Fifty-five genera including unclassified_f_Comamonadaceae, norank_f_Saprospiraceae, Flavobacterium, norank_f_Hydrogenophilaceae, Dokdonella, Terrimonas, norank_f_Anaerolineaceae, Tetrasphaera, Simplicispira, norank_c_Ardenticatenia, and Nitrospira existed in all samples, accounting for 60.6–82.7% of total effective sequences in each sample. The relative abundances of Saprospiraceae, Flavobacterium, and Tetrasphaera with the respective averages of 12.0%, 8.3%, and 5.2% in bulking sludge samples were higher than those in normal samples. Filamentous Saprospiraceae, Flavobacterium, and Tetrasphaera multiplied were the main cause for the sludge bulking. Redundancy analysis (RDA) indicated that influent BOD5, DO, water temperature, and influent ammonia had a distinct effect on bacterial community structures.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 852 ◽  
Author(s):  
Ning Xie ◽  
Liping Zhong ◽  
Liao Ouyang ◽  
Wang Xu ◽  
Qinghuai Zeng ◽  
...  

Municipal wastewater treatment plants (WWTPs) use functional microorganisms in activated sludge (AS) to reduce the environmental threat posed by wastewater. In this study, Illumina NovaSeq sequencing of 16S rRNA genes was performed to explore the microbial communities of AS at different stages of the two WWTP projects in Shenzhen, China. Results showed that Proteobacteria, Bacteroidetes, Acidobacteria, Firmicutes, and Nitrospirae were the dominant phyla in all the samples, with Proteobacteria being the most abundant and reaching a maximum proportion of 59.63%. There was no significant difference in biodiversity between the two water plants, but Stage 1 and Stage 2 were significantly different. The Mantel test indicated that nitrate, total nitrogen (TN), chemical oxygen demand (COD), and nutrients were essential factors affecting the bacterial community structure. FAPROTAX analysis emphasized that the leading functional gene families include nitrification, aerobic nitrite oxidation, human pathogens, and phototrophy. This study reveals changes in the community structure of AS in different treatment units of Banxuegang WWTP, which can help engineers to optimize the wastewater treatment process.


2018 ◽  
Vol 77 (10) ◽  
pp. 2397-2406 ◽  
Author(s):  
Xuemeng He ◽  
Lili Ding ◽  
Wenbo Su ◽  
Haijun Ma ◽  
Hui Huang ◽  
...  

Abstract Endotoxins are potential toxics impacting human health through respiration derived in wastewater treatment plants (WWTPs), yet the formation of endotoxins during wastewater treatment processes is still lacking research. In our study, the distribution of endotoxins and bacterial community structure in the wastewater of three full scale pharmaceutical WWTPs were explored using the limulus amebocyte lysate (LAL) test and MiSeq technique. Results showed that higher endotoxin activities in the influent of Plant A and Plant C (560 and 1140 EU/mL), stemming from the fermentation process, were found compared to that of Plant B (135 EU/mL), coming from the process of chemical synthesis. During the anaerobic treatment and the cyclic activated sludge system (CASS) in the three WWTPs, the endotoxin activity increased, while it declined in the aerobic treatment system. In all bioreactors, the relative abundance of Gram-negative bacteria accounted for 50.0–94.6%. Bacteria with high lipopolysaccharide (LPS) in LAL assay were found at the genus level of Bacteroides, Enterococcus, Desulfovibrio, and Megasphaera.


2013 ◽  
Vol 47 (17) ◽  
pp. 6719-6730 ◽  
Author(s):  
Thomas V. Bugge ◽  
Poul Larsen ◽  
Aaron. M. Saunders ◽  
Caroline Kragelund ◽  
Lisbeth Wybrandt ◽  
...  

2020 ◽  
Vol 86 (18) ◽  
Author(s):  
Shaoqing Zhang ◽  
Fuqiang Fan ◽  
Fangang Meng

ABSTRACT Fungi are known to play important roles in pollutant transformation in activated sludge-based wastewater treatment plants (WWTPs). However, the seasonality and distributions of fungal populations in different-sized flocs have still remained largely unknown. In this study, seasonal population dynamics and community separation of fungi in a municipal WWTP across a 1-year period were investigated. We classified all taxa into six categories based on abundances to assess their roles and contributions to the whole community. The results showed that the rare taxa (<0.01%) contributed greatly to species richness (95.27%). Conversely, although low in species diversity, abundant taxa (≥1%) accounted for the majority (89.45%) of the total relative abundance, which suggested that a few core abundant fungi existed in the activated sludge ecosystem. The abundant, conditionally rare, and rare taxa contributed 30.14%, 31.11%, and 38.75%, respectively, to temporal shifts in community structure, and their abundances responded differently to environmental variables, suggesting that these three subcommunities exhibited a large difference in environmental sensitivity. Importantly, the results revealed seasonal dynamics of the whole fungal community and the subcommunities of all the microbial taxon categories, resulting in significant differences in community structures between warm and cold seasons. Furthermore, fungal diversity and the compositions of the whole community and subcommunities differed significantly among flocs of different sizes, which underlined the size-based fungal community separation in activated sludge of WWTPs. The findings of this work improved our understanding of fungal population dynamics and community separation in WWTPs. IMPORTANCE Fungi are important contributors to the various functions of activated sludge in wastewater treatment plants (WWTPs). Unlike previous studies, this work demonstrated the seasonality of the fungal community over a longer time span while it also systematically assessed the contributions of abundant, conditionally rare, and rare taxa to the whole community. Importantly, in the present study, we considered sludge flocs of a certain size range rather than the whole sludge flocs as a community. Our results revealed significant differences in fungal community structure among different-sized flocs, which supported the idea that size-based fungal community segregation is occurring in activated sludge ecosystems. The findings provide new insights into the dynamic changes or distribution of fungi in the bioaggregates of sludge flocs in WWTPs.


Sign in / Sign up

Export Citation Format

Share Document