Sustainable conjunctive water management model for alleviating water shortage

2022 ◽  
Vol 304 ◽  
pp. 114243
Author(s):  
Rongjie Hao ◽  
Guohe Huang ◽  
Lirong Liu ◽  
Yongping Li ◽  
Jizhe Li ◽  
...  
2013 ◽  
Vol 295-298 ◽  
pp. 1927-1930
Author(s):  
Ke Bai Li

Established urban living water management model. With capital and labor as state variables, using the pole assignment robust control method, realize the urban living water system supply and demand balance tending to target value.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 640 ◽  
Author(s):  
Ioannis M. Kourtis ◽  
Vassilios A. Tsihrintzis ◽  
Evangelos Baltas

The present work aims at quantifying the benefit of Low Impact Development (LID) practices in reducing peak runoff and runoff volume, and at comparing LID practices to conventional stormwater solutions. The hydrologic-hydraulic model used was the Storm Water Management Model (SWMM5.1). The LID practices modeled were: (i) Green roofs; and (ii) Permeable pavements. Each LID was tested independently and compared to two different conventional practices, i.e., sewer enlargement and detention pond design. Results showed that for small storm events LID practices are comparable to conventional measures, in reducing flooding. Overall, smaller storms should be included in the design process.


2018 ◽  
Vol 45 ◽  
pp. 00058 ◽  
Author(s):  
Ireneusz Nowogoński ◽  
Ewa Ogiołda

Using SWMM 5.1 (Storm Water Management Model) software, a model of sewage system functioning in Głogów was developed. It was calibrated based on the results of field studies from the years 2011– 14, while the properness of its activity was verified for the results of measurements carried out during the period 1998–2000. The verification of the model showed acceptable discrepancies between the measured and simulated values of channel depth. Factors which caused differences were indicated and, on the basis of this, conclusions pertaining to further studies were formulated.


2015 ◽  
Vol 31 (4) ◽  
pp. 462-476 ◽  
Author(s):  
Gaurav V. Jain ◽  
Ritesh Agrawal ◽  
R.J. Bhanderi ◽  
P. Jayaprasad ◽  
J.N. Patel ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 143-154
Author(s):  
Rahmat Faizal ◽  
Noerman Adi Prasetya ◽  
Zikri Alstony ◽  
Aditya Rahman

Tarakan City experiences problems with standing water during the rainy season, especially in the west Tarakan sub-district which is the center of Tarakan. This puddle not only submerged settlements and offices but also shops and access roads that caused considerable economic losses. An evaluation was carried out by using the Storm Water Management Model (SWMM). SWMM is a rainfall-runoff simulation model used for simulating the quantity and quality of surface runoff from urban areas. Based on the evaluation using SWMM software, the drainage system in Tarakan, especially in Jalan Mulwarman has several inundated channels, namely channels 2, 3, 4, 5, 6, 7, 11, 12, 13, 14. This is influenced by the dimensions of the drainage channel that cannot accommodate existing water runoff and sediment thickness that covers the drainage channels so that the capacity is reduced, if it rains it will cause puddles at several points in Tarakan City. In order to deal with these puddles, it is necessary to change the dimensions of the channel and routinely dredge sediments that cover the drainage channels.


2007 ◽  
Vol 11 ◽  
pp. 93-99 ◽  
Author(s):  
T. Conradt ◽  
M. Kaltofen ◽  
M. Hentschel ◽  
F. F. Hattermann ◽  
F. Wechsung

Abstract. This second part of the paper presents the details of the eco-hydrological model SWIM simulating the natural water supply and its coupling to WBalMo, a water management model. Based on the climate scenarios of the STAR model, SWIM simulates the natural water and matter fluxes for the entire Elbe River area. All relevant processes are modelled for hydrotopes and the resulting discharges are accumulated in subbasins. The output data are input for the water management model WBalMo and the quality models Moneris and QSim. WBalMo takes storage management, inputs and withdrawals into account and analyses how demands by industry, power plants and households will be met at changing natural supply conditions. Some of the first results shall be presented here.


Sign in / Sign up

Export Citation Format

Share Document