scholarly journals A stochastic rough-approximation water management model for supporting sustainable water-environment strategies in an irrigation district of arid region

2017 ◽  
Vol 31 (9) ◽  
pp. 2183-2200 ◽  
Author(s):  
X. T. Zeng ◽  
G. H. Huang ◽  
J. L. Zhang ◽  
Y. P. Li ◽  
L. You ◽  
...  
Water Policy ◽  
2006 ◽  
Vol 8 (3) ◽  
pp. 269-285 ◽  
Author(s):  
Dennis Wichelns

Economic incentives are used in many situations to motivate improvements in the use of scarce resources. In some areas, implementing appropriate incentives is made challenging by the nature of existing institutions or the inability to assign property rights and measure individual use of key resources. Higher prices for irrigation water can motivate wiser use of water in regions where the opportunity cost of water is rising, due to increasing municipal, industrial and environmental demands. This paper describes how an increasing block-rate pricing structure was designed and implemented in an irrigation district in central California. The goals of the program were to improve water management practices and reduce the volume of subsurface drain water discharged into the San Joaquin River. Results describing reductions in average irrigation depths and drain water volumes, collected throughout the 1990s, demonstrate the potential for achieving resource management goals with economic incentives that motivate changes in farm-level management practices. Complementary incentive programs and issues regarding program implementation and the sustainability of drain water reduction efforts in an arid region also are discussed.


1995 ◽  
Vol 31 (8) ◽  
pp. 393-400 ◽  
Author(s):  
Joost de Jong ◽  
Peter T. J. C. van Rooy ◽  
S. Harry Hosper

Until the last two decades, the global perception of how to control our various water bodies was remarkably similar – water management was organised on a sectoral basis, as it always had been. It was only in the 1970s that the people actually responsible for implementing water management began to become aware of the serious implications of such an approach: water quality deterioration, desiccation and an alarming loss of the flora and fauna that characterised their local water environment. It was a growing awareness that led to the formation of the concept of integrated water management, a concept almost universally accepted today as the way forward. However, despite the fact that few dispute the validity of the concept, a number of obstacles remain before this theoretical agreement can be transformed into practical action. Three main bottlenecks stand in the way of implementation: institutional, communicational and socio-political. Whilst solutions to these are available, the key question still to be answered is whether society is really prepared to accept the consequent changes in the way we live that will result from putting the theory of integrated water management into practice. It was this issue that dominated the “Living with water” conference held in Amsterdam in September 1994. The following is a summary of the discussions held there and the various papers that were submitted.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Junxia Yan ◽  
Yanfei Ma ◽  
Dongyun Zhang ◽  
Zechen Li ◽  
Weike Zhang ◽  
...  

Land surface evapotranspiration (ET) and gross primary productivity (GPP) are critical components in terrestrial ecosystems with water and carbon cycles. Large-scale, high-resolution, and accurately quantified ET and GPP values are important fundamental data for freshwater resource management and help in understanding terrestrial carbon and water cycles in an arid region. In this study, the revised surface energy balance system (SEBS) model and MOD17 GPP algorithm were used to estimate daily ET and GPP at 100 m resolution based on multi-source satellite remote sensing data to obtain surface biophysical parameters and meteorological forcing data as input variables for the model in the midstream oasis area of the Heihe River Basin (HRB) from 2010 to 2016. Then, we further calculated the ecosystem water-use efficiency (WUE). We validated the daily ET, GPP, and WUE from ground observations at a crop oasis station and conducted spatial intercomparisons of monthly and annual ET, GPP, and WUE at the irrigation district and cropland oasis scales. The site-level evaluation results show that ET and GPP had better performance than WUE at the daily time scale. Specifically, the deviations in the daily ET, GPP, and WUE data compared with ground observations were small, with a root mean square error (RMSE) and mean absolute percent error (MAPE) of 0.75 mm/day and 26.59%, 1.13 gC/m2 and 36.62%, and 0.50 gC/kgH2O and 39.83%, respectively. The regional annual ET, GPP, and WUE varied from 300 to 700 mm, 200 to 650 gC/m2, and 0.5 to 1.0 gC/kgH2O, respectively, over the entire irrigation oasis area. It was found that annual ET and GPP were greater than 550 mm and 500 gC/m2, and annual oasis cropland WUE had strong invariability and was maintained at approximately 0.85 gC/kgH2O. The spatial intercomparisons from 2010 to 2016 revealed that ET had similar spatial patterns to GPP due to tightly coupled carbon and water fluxes. However, the WUE spatiotemporal patterns were slightly different from both ET and GPP, particularly in the early and late growing seasons for the oasis area. Our results demonstrate that spatial full coverage and reasonably fine spatiotemporal variation and variability could significantly improve our understanding of water-saving irrigation strategies and oasis agricultural water management practices in the face of water shortage issues.


2013 ◽  
Vol 361-363 ◽  
pp. 930-933
Author(s):  
Ju Hua Yang ◽  
Min Xi ◽  
Qing Lei Zhang

In order to protect the water environment of Luyang Lake Wetland, this article thoroughly investigated, analyzed and evaluated Luyang Lake Wetland. We revealed its existing problems and conflicts, from which we provided solving measures from 5 aspects expecting to provide theoretical basis for corresponding policy's making.


2013 ◽  
Vol 295-298 ◽  
pp. 1927-1930
Author(s):  
Ke Bai Li

Established urban living water management model. With capital and labor as state variables, using the pole assignment robust control method, realize the urban living water system supply and demand balance tending to target value.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 640 ◽  
Author(s):  
Ioannis M. Kourtis ◽  
Vassilios A. Tsihrintzis ◽  
Evangelos Baltas

The present work aims at quantifying the benefit of Low Impact Development (LID) practices in reducing peak runoff and runoff volume, and at comparing LID practices to conventional stormwater solutions. The hydrologic-hydraulic model used was the Storm Water Management Model (SWMM5.1). The LID practices modeled were: (i) Green roofs; and (ii) Permeable pavements. Each LID was tested independently and compared to two different conventional practices, i.e., sewer enlargement and detention pond design. Results showed that for small storm events LID practices are comparable to conventional measures, in reducing flooding. Overall, smaller storms should be included in the design process.


2018 ◽  
Vol 45 ◽  
pp. 00058 ◽  
Author(s):  
Ireneusz Nowogoński ◽  
Ewa Ogiołda

Using SWMM 5.1 (Storm Water Management Model) software, a model of sewage system functioning in Głogów was developed. It was calibrated based on the results of field studies from the years 2011– 14, while the properness of its activity was verified for the results of measurements carried out during the period 1998–2000. The verification of the model showed acceptable discrepancies between the measured and simulated values of channel depth. Factors which caused differences were indicated and, on the basis of this, conclusions pertaining to further studies were formulated.


2014 ◽  
Vol 955-959 ◽  
pp. 3145-3150
Author(s):  
Xian Ze Peng ◽  
Cai Yuan ◽  
Qian Yu

Along with the main rivers and lakes of China are polluted inordinately, water environment issues in China have been becomingincreasingly severe. The cross-domain water pollution contradictions cannot be well settled by the government-centered river and watercourse control, which means that,urgently, a new river and watercourse control mechanism needs to be established. With continuous changes of water management, in order to get along with water even more harmoniously, the mankind has formed the concept of water resource management through cross-domain consultation. Combining traditional, historical and social culturefactors, ancient and modern, this paper analyzes influences of the cross-domain consultation upon water culture, proposes detailed countermeasures of establishing the water culture featuring“harmoniousco-existence between mankind and water”by cross-domain consultation, so as to effectively settle contradictions triggered by water pollution amongdifferent administrative regions, and improve the efficiency ofwatercontrol.


2015 ◽  
Vol 31 (4) ◽  
pp. 462-476 ◽  
Author(s):  
Gaurav V. Jain ◽  
Ritesh Agrawal ◽  
R.J. Bhanderi ◽  
P. Jayaprasad ◽  
J.N. Patel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document