scholarly journals Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic

2015 ◽  
Vol 2 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Majid Jamil ◽  
Rajveer Singh ◽  
Sanjeev Kumar Sharma
Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1023
Author(s):  
Arigela Satya Veerendra ◽  
Akeel A. Shah ◽  
Mohd Rusllim Mohamed ◽  
Chavali Punya Sekhar ◽  
Puiki Leung

The multilevel inverter-based drive system is greatly affected by several faults occurring on switching elements. A faulty switch in the inverter can potentially lead to more losses, extensive downtime and reduced reliability. In this paper, a novel fault identification and reconfiguration process is proposed by using discrete wavelet transform and auxiliary switching cells. Here, the discrete wavelet transform exploits a multiresolution analysis with a feature extraction methodology for fault identification and subsequently for reconfiguration. For increasing the reliability, auxiliary switching cells are integrated to replace faulty cells in a proposed reduced-switch 5-level multilevel inverter topology. The novel reconfiguration scheme compensates open circuit and short circuit faults. The complexity of the proposed system is lower relative to existing methods. This proposed technique effectively identifies and classifies faults using the multiresolution analysis. Furthermore, the measured current and voltage values during fault reconfiguration are close to those under healthy conditions. The performance is verified using the MATLAB/Simulink platform and a hardware model.


2019 ◽  
Vol 28 ◽  
pp. 01037 ◽  
Author(s):  
Maciej Kozak

The paper presents the background and results of numerical simulation and experimental research of a system using auctioneering diodes used to distribute the electrical power between two power converters connected with intermediate circuits in parallel, direct connection. Presented non-isolated power distribution system which utilizes blocking diodes placed in DC branches are used in the selected ship's electrical systems, however, they create problems related to control and handling ground faults. Another issue occurring during the operation of this type of systems is increased heat dissipation while diodes switching. Selected problems related to the operation of experimental system have been identified by means of simulation studies and experiments carried out in a 11 kVA laboratory system and the theoretical basis along with results are provided in the article.


Author(s):  
Pratul Arvind ◽  
Rudra prakash Maheswari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. A Fuzzy c-mean (FCM) and statistical based approach has been used. Samples are transformed as clusters by use of FCM and fed to Expectation- Maximization (EM) algorithm for classifying and locating faults in an unbalanced distribution system. Further, it is to be kept in mind that the combination has not been used for the above purpose as per the literature available till date.


The concept of smart grid to transform the old power grid into a smart and intelligent electric power distribution system is, currently, a hot research topic. Smart grid offers the merging of electrical power engineering technologies with network communications. Game theory has featured as an interesting technique, adopted by many researchers, to establish effective smart grid communications. The use of game theory has offered solutions to various decision-making problems, ranging from distributed load management to micro storage management in smart grid. Interestingly, different researchers have different objectives or problem scopes for adopting game theory in smart grid. This chapter explores the game-based approach.


Sign in / Sign up

Export Citation Format

Share Document