scholarly journals FCM and Statistical Based Approach for Classification and Location of Faults in Electrical Distribution System

Author(s):  
Pratul Arvind ◽  
Rudra prakash Maheswari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. A Fuzzy c-mean (FCM) and statistical based approach has been used. Samples are transformed as clusters by use of FCM and fed to Expectation- Maximization (EM) algorithm for classifying and locating faults in an unbalanced distribution system. Further, it is to be kept in mind that the combination has not been used for the above purpose as per the literature available till date.

2011 ◽  
Vol 403-408 ◽  
pp. 5007-5014
Author(s):  
Pratul Arvind ◽  
Rudra Prakash Maheshwari

Electric Power Distribution System is a complex network of electrical power system. Also, large number of lines on a distribution system experiences regular faults which lead to high value of current. Speedy and precise fault location plays a pivotal role in accelerating system restoration which is a need of modern day. Unlike transmission system which involves a simple connection, distribution system has a very complicated structure thereby making it a herculean task to design the network for computational analysis. In this paper, the authors have simulated IEEE 13- node distribution system using PSCAD which is an unbalanced system and current samples are generated at the substation end. Considering the application of signal processing tools to power systems a talk of modern day research, Gabor decomposition of the current samples are also presented which is utilised for locating all ten types of faults. It is kept in mind that Gabor transform has not been applied to current samples of distribution system as per the literature available till date.


The concept of smart grid to transform the old power grid into a smart and intelligent electric power distribution system is, currently, a hot research topic. Smart grid offers the merging of electrical power engineering technologies with network communications. Game theory has featured as an interesting technique, adopted by many researchers, to establish effective smart grid communications. The use of game theory has offered solutions to various decision-making problems, ranging from distributed load management to micro storage management in smart grid. Interestingly, different researchers have different objectives or problem scopes for adopting game theory in smart grid. This chapter explores the game-based approach.


2013 ◽  
Vol 791-793 ◽  
pp. 1889-1891
Author(s):  
Yan Li Fan ◽  
Qing En Li

The low-voltage distribution system is the key component of the electrical power system. Some analysis and research of the low-voltage distribution system is carried out in this paper, which provides some scientific basis to design the low-voltage distribution system. Firstly, the summarize of low-voltage distribution system is taken. The influence to productions and livings of low-voltage distribution system is introduced. Secondly, the mode of connection and design philosophy of low-voltage distribution system is studied in detail, especially the high-rise buildings low-voltage distribution system is concluded and summarized.


2020 ◽  
Vol 124 (1281) ◽  
pp. 1789-1797
Author(s):  
M. Bekhti ◽  
M. Bensaada ◽  
M. Beldjehem

ABSTRACTOne of the most critical aspects of a small satellite is the electrical power system (EPS) since the electrical power is necessary for the satellite to operate correctly during its predefined lifetime. The electrical power system consists mainly of solar cells, batteries, voltage converters and protection circuits. The electrical power system is responsible of providing stable power to the rest of the satellite subsystems.In satellite electrical power systems, overcurrent protection is now becoming an important function handled by the power distribution module (PDM). This paper proposes a method to evaluate the suggested protection. With the proposed procedure we should be able to verify that every possible failure does not travel through the EPS and cause a fatal degradation of the electrical power system. This will allow a complete evaluation of functionality of the protection hardware.This paper discusses the design and implementation of the power distribution module (PDM) for the coming generation of small satellites for the Algerian Space Agency (ASAL). The design must provide a reliable protection for the subsystems from the overcurrent associated with a device failure.


Author(s):  
Hamid Touijer ◽  
Mohammed El Alami ◽  
Mustapha Zahri ◽  
Mohamed Habibi

In an electric power distribution system (EPDS), fault location accuracy is critical for system stability. In the past, several algorithms have shown that they are inefficient. However, the results of these algorithms have been shown to be inefficient, and they should not be used for every sort of the faults. This paper presents a new algorithm capable to determine the location of fault accurately with low error rate. It is based on the voltage and current calculation at the source station for different types of faults by using either one power supply or double power supply. The work includes the formulation analytical development as simulation test results. The test results are produced by numerical simulation using data from a recognized distribution line in the literature.


Author(s):  
Yuttana Kongjeen ◽  
Krischonme Bhumkittipich

This paper proposes the impact of plug-in electric vehicles integrated into power distribution system based on voltage dependent control. The plug-in electric vehicles was modeled as the static load model in power distribution systems under balanced load condition. The power flow analysis is determined by using the basic parameters of the electrical network. The main point of this study are compare with voltage magnitude profiles, load voltage deviation, and total power losses of the electrical power system. There are investigating the affected from constant power load, constant current load, constant impedance load and plug-in electric vehicles load, respectively. The IEEE 33 bus test system is used to test the proposed method by assigning each load type to a balanced load in steady state and applied the solving methodology based on the bus injection to branch injection matric, branch current to bus voltage matrix, and current injection matrix to solve the power flow problem. The simulation results showed that the plug-in electric vehicles load had the lowest impact compared to other loads. The lowest plug-in values for the electric vehicle loads were 0.062, 119.67 kW and 79.31 kVar for the load voltage deviation, total active power loss and total reactive power loss, respectively. Therefore, this study can be verified that the plug-in electric vehicles load were affected to the lowest of the electrical power system in condition to same sizing and position. So that, in condition to the plug-in electric vehicles load added into the electrical power system with the conventional load type or complex load type could be considered that the affected from the plug-in electric vehicles load in next study.


2019 ◽  
Vol 28 ◽  
pp. 01037 ◽  
Author(s):  
Maciej Kozak

The paper presents the background and results of numerical simulation and experimental research of a system using auctioneering diodes used to distribute the electrical power between two power converters connected with intermediate circuits in parallel, direct connection. Presented non-isolated power distribution system which utilizes blocking diodes placed in DC branches are used in the selected ship's electrical systems, however, they create problems related to control and handling ground faults. Another issue occurring during the operation of this type of systems is increased heat dissipation while diodes switching. Selected problems related to the operation of experimental system have been identified by means of simulation studies and experiments carried out in a 11 kVA laboratory system and the theoretical basis along with results are provided in the article.


Sign in / Sign up

Export Citation Format

Share Document