Residual stress induced failure of Ti-6Al−4V/Si3N4 joints brazed with Ag-Cu-Ti filler: the effects of brazing zone’s elasto-plasticity and ceramics' intrinsic properties

Author(s):  
Fei Shen Ong ◽  
Bastian Rheingans ◽  
Kenta Goto ◽  
Hirobumi Tobe ◽  
Takahito Ohmura ◽  
...  
2005 ◽  
Vol 490-491 ◽  
pp. 396-403 ◽  
Author(s):  
Yan Huai Li ◽  
Jian Lu ◽  
Ke Wei Xu

Residual stresses distribution after shot peening and its relaxation during uni-axial loading were investigated experimentally and theoretically on stainless steel of AISI304. An analytical model was proposed based upon continuum plasticity theory and elasto-plasticity finite element (FE) analysis, in which both relaxation of shot peening induced residual stress and variation of yield strength in the surface layer were taken into consideration. The results show that the value of yield strength in surface layer is altered after shot peening, and the relaxation of residual stress takes place at the point where the combination of applied strain and residual strain exceeds the true value of yield strength. A fundamental agreement was proved between measurements and predictions in simple tension and compression.


1984 ◽  
Vol 8 (3) ◽  
pp. 157-164
Author(s):  
C.L. Tan ◽  
K.C. Wong

Using the numerical boundary integral equation (BIE) method for two-dimensional elasto-plasticity based on the quadratic isoparametric formulation, solutions for the deformations and stresses in two 2024-T81 aluminum sheets with pressurized circular holes are obtained. Results are presented showing the plastic zone developments in these structures, the variations of the stresses when subjected to the applied radial pressures at the hole peripheries, as well as the residual stress distributions when the loads are completely removed. Where appropriate, the computed solutions are compared with those obtained analytically for a similar problem.


2013 ◽  
Vol 816-817 ◽  
pp. 806-811 ◽  
Author(s):  
Ali Aidibe ◽  
Souheil Antoine Tahan

Nowadays, a complicated and expensive conformation jig is needed to inspect the nonrigid parts. In a free-state condition, these parts may have a significant different shape than their nominal model (CAD) due to gravity loads and residual stress. In this paper, we present a new method for automatic fixtureless inspection of nonrigid parts. The inspection in our case is limited to the profile deviation as required by ASME Y14.5 standard and the defects are dent shapes. Our method combines the curvature estimation, one of the intrinsic properties of the geometry, with the Thomson statistical test in order to identify the defects due to the inherent variations of the manufacturing process from the deformations due to the flexibility of the part. The method is tested and validated on a simulated flexible part representing a typical sheet metal from the transport industry.


Author(s):  
J. Fang ◽  
H. M. Chan ◽  
M. P. Harmer

It was Niihara et al. who first discovered that the fracture strength of Al2O3 can be increased by incorporating as little as 5 vol.% of nano-size SiC particles (>1000 MPa), and that the strength would be improved further by a simple annealing procedure (>1500 MPa). This discovery has stimulated intense interest on Al2O3/SiC nanocomposites. Recent indentation studies by Fang et al. have shown that residual stress relief was more difficult in the nanocomposite than in pure Al2O3. In the present work, TEM was employed to investigate the microscopic mechanism(s) for the difference in the residual stress recovery in these two materials.Bulk samples of hot-pressed single phase Al2O3, and Al2O3 containing 5 vol.% 0.15 μm SiC particles were simultaneously polished with 15 μm diamond compound. Each sample was cut into two pieces, one of which was subsequently annealed at 1300° for 2 hours in flowing argon. Disks of 3 mm in diameter were cut from bulk samples.


2021 ◽  
Vol 160 ◽  
pp. 107336
Author(s):  
Ziqian Zhang ◽  
Gang Shi ◽  
Xuesen Chen ◽  
Lijun Wang ◽  
Le Zhou

2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


Sign in / Sign up

Export Citation Format

Share Document