scholarly journals Recent progress on the traditional Chinese medicines that regulate the blood

2016 ◽  
Vol 24 (2) ◽  
pp. 221-238 ◽  
Author(s):  
Hsin-Yi Hung ◽  
Tian-Shung Wu
Author(s):  
Wang Wang ◽  
Yueying Yang ◽  
Yang Liu ◽  
Dejuan Sun ◽  
Hua Li ◽  
...  

: Natural products have remarkable structural diversity and biological characteristics, providing researchers with more possibilities to develop novel drugs for disease therapeutics. Andrographolide, an ent-labdane diterpenoid from traditional Chinese medicines, Andrographis paniculata, exhibits a broad range of biological activities, which has been a hot area of research for several years. Up to now, lots of its derivatives with multiple bioactivities have been prepared through chemical modification. This review summarizes andrographolide derivatives prepared in the last ten years (2006-present), classifies them by different biological activities, and provides some discussion about the design of novel and potent derivatives.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yongchang Li ◽  
Wei Zhong ◽  
Xiangqi Tang

Cerebral ischemia is a common global disease that is characterized by a loss of neurological function and a poor prognosis in many patients. However, only a limited number of treatments are available for this condition at present. Given that the efficacies of these treatments tend to be poor, cerebral ischemia can create a significant burden on patients, families, and society. Mesenchymal stem cell (MSC) transplantation treatment has shown significant potential in animal models of ischemic stroke; however, the specific mechanisms underlying this effect have yet to be elucidated. Furthermore, clinical trials have yet to yield promising results. Consequently, there is an urgent need to identify new methods to improve the efficiency of MSC transplantation as an optimal treatment for ischemic stroke. In this review, we provide an overview of recent scientific reports concerning novel strategies that promote MSC transplantation as an effective therapeutic approach, including physical approaches, chemical agents, traditional Chinese medicines and extracts, and genetic modification. Our analyses showed that two key factors need to be considered if we are to improve the efficacy of MSC transplantation treatments: survival ability and homing ability. We also highlight the importance of other significant mechanisms, including the enhanced activation of MSCs to promote neurogenesis and angiogenesis, and the regulation of permeability in the blood-brain barrier. Further in-depth investigations of the specific mechanisms underlying MSC transplantation treatment will help us to identify effective methods that improve the efficiency of MSC transplantation for ischemic stroke. The development of safer and more effective methods will facilitate the application of MSC transplantation as a promising adjuvant therapy for the treatment of poststroke brain damage.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110150
Author(s):  
Gang Li ◽  
Wei Zhou ◽  
Xiurong Zhao ◽  
Ying Xie

The novel coronavirus, 2019-nCoV, has led to a major pandemic in 2020 and is responsible for more than 2.9 million officially recorded deaths worldwide. As well as synthetic anti-viral drugs, there is also a need to explore natural herbal remedies. The Traditional Chinese Medicines (TCMs) system has been used for thousands of years for the prevention, diagnosis, and treatment of several chronic diseases. In this paper, we performed an in silico molecular docking and interaction analysis of TCMs against SARS-CoV-2 receptor RNA-dependent RNA polymerase (RdRp). We obtained the 5 most effective plant compounds which had a better binding affinity towards the target receptor protein. These compounds areforsythoside A, rutin, ginkgolide C, icariside II, and nolinospiroside E. The top-ranked compound, based on docking score, was nolinospiroside, a glycoside found in Ophiopogon japonicas that has antioxidant properties. Protein-ligand interaction analysis discerned that nolinospiroside formed a strong bond between ARG 349 of the protein receptor and the carboxylate group of the ligand, forming a stable complex. Hence, nolinospiroside could be deployed as a lead compound against SARS-CoV-2 infection that can be further investigated for its potential benefits in curbing the viral infection.


Sign in / Sign up

Export Citation Format

Share Document