Cinnamaldehyde has beneficial effects against oxidative stress and nitric oxide metabolites in the brain of aged rats fed with long-term, high-fat diet

2019 ◽  
Vol 52 ◽  
pp. 545-551 ◽  
Author(s):  
Zomorrod Ataie ◽  
Hossein Mehrani ◽  
Asghar Ghasemi ◽  
Khadijeh Farrokhfall
2020 ◽  
Vol 11 (1) ◽  
pp. 147-160
Author(s):  
Ranyah Shaker M. Labban ◽  
Hanan Alfawaz ◽  
Ahmed T. Almnaizel ◽  
Wail M. Hassan ◽  
Ramesa Shafi Bhat ◽  
...  

AbstractObesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.


2021 ◽  
Author(s):  
Qi Guan ◽  
Xinwen Ding ◽  
Lingyue Zhong ◽  
Chuang Zhu ◽  
Pan Nie ◽  
...  

Long term high-fat diet (HF) can cause metabolic disorders, which might induce fatty liver. Fermented whole cereal food exhibit healthy potential due to their unique phytochemical composition and probiotics. In...


2020 ◽  
Vol 75 (2) ◽  
pp. 208-214 ◽  
Author(s):  
Sen Li ◽  
Furong Xian ◽  
Xiao Guan ◽  
Kai Huang ◽  
Wenwen Yu ◽  
...  

2012 ◽  
Vol 287 (1-2) ◽  
pp. 15-24 ◽  
Author(s):  
Zhengde Du ◽  
Yang Yang ◽  
Yujuan Hu ◽  
Yu Sun ◽  
Sulin Zhang ◽  
...  

2016 ◽  
Vol 37 (5) ◽  
pp. 783-789 ◽  
Author(s):  
Kinga Gzielo ◽  
Michal Kielbinski ◽  
Jakub Ploszaj ◽  
Krzysztof Janeczko ◽  
Stefan P. Gazdzinski ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Hilda Vargas-Robles ◽  
Amelia Rios ◽  
Monica Arellano-Mendoza ◽  
Bruno A. Escalante ◽  
Michael Schnoor

Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion) would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD). Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.


2019 ◽  
Vol 241 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Jirapas Sripetchwandee ◽  
Hiranya Pintana ◽  
Piangkwan Sa-nguanmoo ◽  
Chiraphat Boonnag ◽  
Wasana Pratchayasakul ◽  
...  

Obese-insulin resistance following chronic high-fat diet consumption led to cognitive decline through several mechanisms. Moreover, sex hormone deprivation, including estrogen and testosterone, could be a causative factor in inducing cognitive decline. However, comparative studies on the effects of hormone deprivation on the brain are still lacking. Adult Wistar rats from both genders were operated upon (sham operations or orchiectomies/ovariectomies) and given a normal diet or high-fat diet for 4, 8 and 12 weeks. Blood was collected to determine the metabolic parameters. At the end of the experiments, rats were decapitated and their brains were collected to determine brain mitochondrial function, brain oxidative stress, hippocampal plasticity, insulin-induced long-term depression, dendritic spine density and cognition. We found that male and female rats fed a high-fat diet developed obese-insulin resistance by week 8 and brain defects via elevated brain oxidative stress, brain mitochondrial dysfunction, impaired insulin-induced long-term depression, hippocampal dysplasticity, reduced dendritic spine density and cognitive decline by week 12. In normal diet-fed rats, estrogen deprivation, not testosterone deprivation, induced obese-insulin resistance, oxidative stress, brain mitochondrial dysfunction, impaired insulin-induced long-term depression, hippocampal dysplasticity and reduced dendritic spine density. In high-fat–diet-fed rats, estrogen deprivation, not testosterone deprivation, accelerated and aggravated obese-insulin resistance and brain defects at week 8. In conclusion, estrogen deprivation aggravates brain dysfunction more than testosterone deprivation through increased oxidative stress, brain mitochondrial dysfunction, impaired insulin-induced long-term depression and dendritic spine reduction. These findings may explain clinical reports which show more severe cognitive decline in aging females than males with obese-insulin resistance.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Ying Liu ◽  
Le Zhang ◽  
Sun OK Fernandez‐Kim ◽  
Christopher Morrison ◽  
Annadora Bruce‐Keller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document