scholarly journals Preparation and synthetic applications of novel tetrafluoroethylenating zinc reagent with a triple bond as its functional group

2021 ◽  
pp. 109929
Author(s):  
Chihiro Kajimoto ◽  
Takuto Kataoka ◽  
Shota Kageyama ◽  
Haruka Ohsato ◽  
Shigeyuki Yamada ◽  
...  
Keyword(s):  
Tetrahedron ◽  
2004 ◽  
Vol 60 (11) ◽  
pp. 2497-2507 ◽  
Author(s):  
Chisato Mukai ◽  
Takashi Kozaka ◽  
Yukihiro Suzuki ◽  
In Jong Kim

2019 ◽  
Vol 74 (9) ◽  
pp. 671-676 ◽  
Author(s):  
Vito A. Fiore ◽  
Gerhard Maas

AbstractThe uncatalyzed silylphosphanylation of acetylenic N-trifluoromethylsulfonyl-carboxamides by Ph2P–SiMe3, formally an insertion of a C,C triple bond into a P–Si bond, is reported. Some characteristic functional group transformations of the resulting 3-PPh2-2-SiMe3-N-triflyl-acrylamides were briefly explored: transamidation of the N-triflylamide group with allylamine, P oxidation and protodesilylation. A hydrophosphorylation of the acetylenic triple bond with chloro(diphenyl)phosphane is also reported.


ChemInform ◽  
2004 ◽  
Vol 35 (29) ◽  
Author(s):  
Chisato Mukai ◽  
Takashi Kozaka ◽  
Yukihiro Suzuki ◽  
In Jong Kim

2020 ◽  
Author(s):  
José Tiago Menezes Correia ◽  
Gustavo Piva da Silva ◽  
Camila Menezes Kisukuri ◽  
Elias André ◽  
Bruno Pires ◽  
...  

A metal- and catalyst-free photoinduced radical cascade hydroalkylation of 1,7-enynes has been disclosed. The process is triggered by a SET event involving a photoexcited electron-donor-aceptor complex between NHPI ester and Hantzsch ester, which decomposes to afford a tertiary radical that is readily trapped by the enyne. <a>The method provides an operationally simple, robust and step-economical approach to the construction of diversely functionalized dihydroquinolinones bearing quaternary-centers. A sequential one-pot hydroalkylation-isomerization approach is also allowed giving access to a family of quinolinones. A wide substrate scope and high functional group tolerance was observed in both approaches</a>.


2020 ◽  
Author(s):  
Baojian Xiong ◽  
Yue Li ◽  
Yin Wei ◽  
Søren Kramer ◽  
Zhong Lian

Cross-coupling between substrates that can be easily derived from phenols is highly attractive due to the abundance and low cost of phenols. Here, we report a dual nickel/palladium-catalyzed reductive cross-coupling between aryl tosylates and aryl triflates; both substrates can be accessed in just one step from readily available phenols. The reaction has a broad functional group tolerance and substrate scope (>60 examples). Furthermore, it displays low sensitivity to steric effects demonstrated by the synthesis of a 2,2’disubstituted biaryl and a fully substituted aryl product. The widespread presence of phenols in natural products and pharmaceuticals allow for straightforward late-stage functionalization, illustrated with examples such as Ezetimibe and tyrosine. NMR spectroscopy and DFT calculations indicate that the nickel catalyst is responsible for activating the aryl triflate, while the palladium catalyst preferentially reacts with the aryl tosylate.


2020 ◽  
Author(s):  
Mikhail Trought ◽  
Isobel Wentworth ◽  
Timothy Leftwich ◽  
Kathryn Perrine

The knowledge of chemical functionalization for area selective deposition (ASD) is crucial for designing the next generation heterogeneous catalysis. Surface functionalization by oxidation was studied on the surface of highly oriented pyrolytic graphite (HOPG). The HOPG surface was exposed to with various concentrations of two different acids (HCl and HNO3). We show that exposure of the HOPG surface to the acid solutions produce primarily the same -OH functional group and also significant differences the surface topography. Mechanisms are suggested to explain these strikingly different surface morphologies after surface oxidation. This knowledge can be used to for ASD synthesis methods for future graphene-based technologies.


2020 ◽  
Author(s):  
Shunya Ohuchi ◽  
Hiroki Koyama ◽  
Hiroki Shigehisa

A catalytic synthesis of cyclic guanidines, which are found in many biologically active compounds and natu-ral products, was developed, wherein transition-metal hydrogen atom transfer and radical-polar crossover were employed. This mild and functional-group tolerant process enabled the cyclization of alkenyl guanidines bearing common protective groups, such as Cbz and Boc. This powerful method not only provided the common 5- and 6-membered rings but also an unusual 7-membered ring. The derivatization of the products afforded various heterocycles. We also investigated the se-lective cyclization of mono-protected or hetero-protected (TFA and Boc) alkenyl guanidines and their further derivatiza-tions.


Sign in / Sign up

Export Citation Format

Share Document