scholarly journals Efficient measurement of hydrodynamic coefficients for vibrating cylinders at supercritical Reynolds numbers

2022 ◽  
Vol 108 ◽  
pp. 103427
Author(s):  
Themistocles L. Resvanis ◽  
J. Kim Vandiver
Author(s):  
Jamison L. Szwalek ◽  
Carl M. Larsen

In-line vibrations have been noted to have an important contribution to the fatigue of free spanning pipelines. Still, in-line contributions are not usually accounted for in current VIV prediction models. The present study seeks to broaden the current knowledge regarding in-line vibrations by expanding the work of Aronsen (2007) to include possible Reynolds number effects on pure in-line forced, sinusoidal oscillations for four Reynolds numbers ranging from 9,000 to 36,200. Similar tests were performed for pure cross-flow forced motion as well, mostly to confirm findings from previous research. When experimental uncertainties are accounted for, there appears to be little dependence on Reynolds number for all three hydrodynamic coefficients considered: the force in phase with velocity, the force in phase with acceleration, and the mean drag coefficient. However, trends can still be observed for the in-line added mass in the first instability region and for the transition between the two instability regions for in-line oscillations, and also between the low and high cross-flow added mass regimes. For Re = 9,000, the hydrodynamic coefficients do not appear to be stable and can be regarded as highly Reynolds number dependent.


Author(s):  
Yiannis Constantinides ◽  
Kamaldev Raghavan ◽  
Metin Karayaka ◽  
Don Spencer

Deepwater riser interference is an area of significant technical complexity and uncertainty in the design cycle due to the intricacies of wake hydrodynamics. Existing models, found in industry guidelines, are based on approximate theoretical models of bare cylinder wake and nominally checked against small scale tests at low Reynolds numbers. In actual conditions the Reynolds number is sufficiently higher and the risers are fitted with vortex-induced vibration (VIV) suppression devices. This raises questions on the applicability of the standard models and hydrodynamic coefficients used, especially if the geometry is different than a circular cylinder. A series of full scale tests, at supercritical Reynolds numbers, were conducted to address these uncertainties and obtain hydrodynamic coefficients for interference design. The tests were carried out utilizing two full scale cylinders fitted with actual VIV suppression devices and towed either in fixed or spring supported configurations. The paper discusses the experimental methodology and findings from the testing program, showing deviations from the standard models found in industry codes.


2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


2012 ◽  
Vol 43 (5) ◽  
pp. 589-613
Author(s):  
Vyacheslav Antonovich Bashkin ◽  
Ivan Vladimirovich Egorov ◽  
Ivan Valeryevich Ezhov ◽  
Sergey Vladimirovich Utyuzhnikov

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 1062-1071 ◽  
Author(s):  
A. Seifert ◽  
L. G. Pack

Sign in / Sign up

Export Citation Format

Share Document