scholarly journals Friction Factor Effect and Heat Transfer Enhancement in Combined Dimple Geometry Arrange in Different Angle to Flow Direction

2021 ◽  
pp. 100043
Author(s):  
S.A. Aasa ◽  
A.S. Shote ◽  
S.O. Giwa ◽  
M. Sharifpur
2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Ankit Tiwari ◽  
Savas Yavuzkurt

The goal of this study is to evaluate the computational fluid dynamic (CFD) predictions of friction factor and Nusselt number from six different low Reynolds number k–ε (LRKE) models namely Chang–Hsieh–Chen (CHC), Launder–Sharma (LS), Abid, Lam–Bremhorst (LB), Yang–Shih (YS), and Abe–Kondoh–Nagano (AKN) for various heat transfer enhancement applications. Standard and realizable k–ε (RKE) models with enhanced wall treatment (EWT) were also studied. CFD predictions of Nusselt number, Stanton number, and friction factor were compared with experimental data from literature. Various parameters such as effect of type of mesh element and grid resolution were also studied. It is recommended that a model, which predicts reasonably accurate values for both friction factor and Nusselt number, should be chosen over disparate models, which may predict either of these quantities more accurately. This is based on the performance evaluation criterion developed by Webb and Kim (2006, Principles of Enhanced Heat Transfer, 2nd ed., Taylor and Francis Group, pp. 1–72) for heat transfer enhancement. It was found that all LRKE models failed to predict friction factor and Nusselt number accurately (within 30%) for transverse rectangular ribs, whereas standard and RKE with EWT predicted friction factor and Nusselt number within 25%. Conversely, for transverse grooves, AKN, AKN/CHC, and LS (with modified constants) models accurately predicted (within 30%) both friction factor and Nusselt number for rectangular, circular, and trapezoidal grooves, respectively. In these cases, standard and RKE predictions were inaccurate and inconsistent. For longitudinal fins, Standard/RKE model, AKN, LS and Abid LRKE models gave the friction factor and Nusselt number predictions within 25%, with the AKN model being the most accurate.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Marco Pievaroli ◽  
Lorenzo Tarchi ◽  
Alberto Ceccherini ◽  
...  

Matrix cooling systems are relatively unknown among gas turbines manufacturers of the western world. In comparison to conventional turbulated serpentines or pin–fin geometries, a lattice–matrix structure can potentially provide higher heat transfer enhancement levels with similar overall pressure losses. This experimental investigation provides heat transfer distribution and pressure drop of four different lattice–matrix geometries with crossing angle of 45 deg between ribs. The four geometries are characterized by two different values of rib height, which span from a possible application in the midchord region up to the trailing edge region of a gas turbine airfoil. For each rib height, two different configurations have been studied: one having four entry channels and lower rib thickness (open area 84.5%), one having six entry channels and higher rib thickness (open area 53.5%). Experiments were performed varying the Reynolds number Res, based on the inlet subchannel hydraulic diameter, from 2000 to 12,000. Heat transfer coefficients (HTCs) were measured using steady state tests and applying a regional average method; test models have been divided into 20 stainless steel elements in order to have a Biot number similitude with real conditions. Elements are 10 per side, five in the main flow direction, and two in the tangential one. Metal temperature was measured with embedded thermocouples, and 20 thin-foil heaters were used to provide a constant heat flux during each test. A specific data reduction procedure has been developed so as to take into account the fin effectiveness and the increased heat transfer surface area provided by the ribs. Pressure drops were also evaluated measuring pressure along the test models. Uniform streamwise distributions of Nusselt number Nus have been obtained for each Reynolds number. Measurements show that the heat transfer enhancement level Nus/Nu0 decreases with Reynolds but is always higher than 2. Results have been compared with previous literature data on similar geometries and show a good agreement.


2014 ◽  
Vol 592-594 ◽  
pp. 1590-1595 ◽  
Author(s):  
Naga Sarada Somanchi ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

The present work deals with the results of the experimental investigations carried out on augmentation of turbulent flow heat transfer in a horizontal circular tube by means of tube inserts, with air as working fluid. Experiments were carried out initially for the plain tube (without tube inserts). The Nusselt number and friction factor obtained experimentally were validated against those obtained from theoretical correlations. Secondly experimental investigations using three kinds of tube inserts namely Rectangular bar with diverging conical strips, Rectangular bar with converging conical strips, Rectangular bar with alternate converging diverging conical strips were carried out to estimate the enhancement of heat transfer rate for air in the presence of inserts. The Reynolds number ranged from 8000 to 19000. In the presence of inserts, Nusselt number and pressure drop increased, overall enhancement ratio is calculated to determine the optimum geometry of the tube insert. Based on experimental investigations, it is observed that, the enhancement of heat transfer using Rectangular bar with converging and diverging conical strips is more effective compared to other inserts. Key words: Heat transfer, enhancement, turbulent flow, conical strip inserts, friction factor, pressure drop.


Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Marco Pievaroli ◽  
Lorenzo Tarchi ◽  
Alberto Ceccherini ◽  
...  

Matrix cooling systems are relatively unknown among gas turbines manufacturers of the western world. In comparison to conventional turbulated serpentines or pin-fin geometries, a lattice-matrix structure can potentially provide higher heat transfer enhancement levels with similar overall pressure losses. This experimental investigation provides heat transfer distribution and pressure drop of four different lattice-matrix geometries with crossing angle of 45 deg between ribs. The four geometries are characterized by two different values of rib height which span from a possible application in the mid chord region up to the trailing edge region of a gas turbine airfoil. For each rib height two different configurations have been studied: one having four entry channels and lower rib thickness (open area 84.5%), one having six entry channels and higher rib thickness (open area 53.5%). Experiments were performed varying the Reynolds number Res, based on the inlet sub-channel hydraulic diameter, from 2000 to 12000. Heat transfer coefficients were measured using steady state tests and applying a regional average method; test models have been divided into 20 stainless steel elements in order to have a Biot number similitude with real conditions. Elements are 10 per side, 5 in the main flow direction and 2 in the tangential one. Metal temperature was measured with embedded thermocouples and 20 thin-foil heaters were used to provide a constant heat flux during each test. A specific data reduction procedure has been developed so as to take into account the fin effectiveness and the increased heat transfer surface area provided by the ribs. Pressure drops were also evaluated measuring pressure along the test models. Uniform streamwise distributions of Nusselt number Nus have been obtained for each Reynolds number. Measurements show that the heat transfer enhancement level Nus/Nu0 decreases with Reynolds but is always higher than 2. Results have been compared with previous literature data on similar geometries and show a good agreement.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 207 ◽  
Author(s):  
Gan Liu ◽  
Chen Yang ◽  
Junhui Zhang ◽  
Huaizhi Zong ◽  
Bing Xu ◽  
...  

A heat exchanger is a device that transfers unneeded heat from one region to another, and transferred heat may be fully reused, thus improving energy efficiency. To augment this positive process, many studies and investigations on automation technologies have been performed. Inserts are widely used in pipe flow for heat transfer enhancement, since they can break the boundary layer and promote the heat exchange. Segmented twisted tape, which is applicable in 3D printing, is a novel insert and has potential in heat transfer enhancement. To clarify its advantages and disadvantages, this research presents a numerical investigation of vortex flow and heat enhancement in pipes containing one segmented twisted element. Flow state and heat transfer behaviour are obtained by simulation under constant wall temperature with different Reynolds numbers, ranging from 10,000 to 35,000. The effects of geometric parameters, including twist ratio (P/D = 2.0, 3.3 and 4.6) and length ratio (L/P = 0.3, 0.5 and 0.7), on the Nusselt number (Nu) and friction factor (f) are investigated. Streamline and temperature distribution are presented. Meanwhile, local and overall heat transfer performance is compared with those of a smooth tube, and the overall performance is evaluated by performance evaluation factor (η). The results indicate that the twist ratio (P/D) plays a dominant role in heat transfer enhancement while the length ratio (L/P) also has considerable influence. It is shown that a segmented tape insert can increase the overall heat transfer rate by 23.5% and the friction factor by 235%, while local improvement along the tube can be 2.8 times more than the plain tube.


2014 ◽  
Vol 931-932 ◽  
pp. 1193-1197 ◽  
Author(s):  
Prawat Soodkaew ◽  
Sompol Skullong ◽  
Pongjet Promvonge ◽  
Watanyu Pairok

This article presents the study of heat transfer enhancement in a uniform heat-fluxed channel fitted with discrete V-shaped baffles. The experiments are carried out by varying airflow rate for Reynolds number ranging from 4100 to 22,000. The V-baffles with relative height ratio, e/H = 0.15 and the attack angle, α = 45o, are mounted repeatedly on the upper plate only, similar to an absorber plate of solar air heater systems. The effects of four baffle-pitch to channel-height ratios (PR= 0.5, 1.0, 1.5 and 2.0) on heat transfer in terms of Nusselt number and pressure loss in the form of friction factor are experimentally investigated. The experimental results show that the use of the discrete V-baffles leads to a considerable increase in Nusselt number and friction factor in comparison to the smooth channel alone. The V-baffled channel with PR=0.5 provides the highest heat transfer, friction factor and thermal enhancement factor.


Sign in / Sign up

Export Citation Format

Share Document