scholarly journals Screening of anti-inflammatory phytocompounds from Crateva adansonii leaf extracts and its validation by in silico modeling

2018 ◽  
Vol 16 (2) ◽  
pp. 711-719 ◽  
Author(s):  
Rathinavel Thirumalaisamy ◽  
Subramanian Ammashi ◽  
Govarthanan Muthusamy
2019 ◽  
Vol 87 ◽  
pp. 31-42 ◽  
Author(s):  
Siddanagouda R. Shivanagoudra ◽  
Wilmer H. Perera ◽  
Jose L. Perez ◽  
Giridhar Athrey ◽  
Yuxiang Sun ◽  
...  

2017 ◽  
Vol 73 ◽  
pp. 109-120 ◽  
Author(s):  
Malledevarapura Gurumurthy Prabhudeva ◽  
Srinivasan Bharath ◽  
Achutha Dileep Kumar ◽  
Shivalingegowda Naveen ◽  
Neratur Krishnappagowda Lokanath ◽  
...  

Author(s):  
Thirumalaisamy Rathinavel ◽  
Subramanian Ammashi ◽  
Gnanendra Shanmugam

Abstract Background Lupeol, a triterpene bioactive compound isolated from Indian traditional plant Crateva adansonii acted as promising and alternative anti-inflammatory agent to treatments of diseases related to inflammation. The inflammatory process in the body serves an important function in the control and repair of injury. However, it is self-perpetuating in number of disease conditions, which must be prevented and treated. Worldwide most prescribing NASID drug shows severe side effects. Whereas drug from natural origin shows dual inhibition of inflammatory and analgesic target protein with more efficacy and less side effects than NSAID drugs. Our study aims to isolate and screen the analgesic and anti-inflammatory potential of lupeol, a pentacyclic triterpenoid isolated from leaf extract of Crateva adansonii belongs to Capparaceae family commonly used Indian traditional medicine for treating inflammatory diseases. Results Methanol and chloroform leaf extracts (ME and CE) and lupeol fraction (LF) of plant Crateva adansonii is investigated through employing in vivo male Wistar albino rat model. Acute toxicity study of C. adansonii ME and CE leaf extracts reveals that no mortality and no behavioral changes in experimental animals up to 2 g/kg. So no lethal dose we consider two optimal doses 200 and 400 mg of plant leaf extracts for in vivo inflammatory and analgesic study. In vivo acute and chronic anti-inflammatory activity was carried out through carrageenan-induced rat paw edema and cotton pellet-induced granuloma models. LF (100 mg/kg, oral route) of Crateva adansonii evoked highest percentage of inflammation inhibition (50 and 33.96% respectively) in both in vivo acute and chronic inflammation model among all tested samples (ME and CE 200 mg and 400 mg/kg, oral route) including reference standard (10 mg/kg, oral route) indomethacin. Carrageenan-challenged experimental animals were screened for one inflammatory marker enzyme myeloperoxidase (MPO), inflammatory products such as Prostaglandrin E2 (PGE2), and eight different cytokines markers (TNFα, IL-6, IFN γ, IL-1α, IL-1β, MCP-1, Rantes, and MIP) associated with inflammation reveals that LF (100 mg/kg, oral route) of Crateva adansonii shows prominent anti-inflammatory activity than reference standard indomethacin (10 mg/kg, oral route) over all these biological tested parameters. In vivo analgesic assays such as hot plate assay and acetic acid-induced writhing assay revealed that LF (100 mg/kg, oral route) possesses significant analgesic activity (11.60 s and 69.05%) when compared with standard drug pentazocine(10 mg/kg, oral route). Finally, we made an in silico screening of lupeol against analgesic (nAChR) and anti-inflammatory (COX-2) target proteins reveals that lupeol possess highest binding affinity with nAChR and COX-2 target proteins (− 8.5 and − 9.0 Kcal/mol) over the reference standard pentazocine and indomethacin (− 7.0 and − 8.4 Kcal/mol) respectively. Conclusion The present study result provides a pharmacological evidences for analgesic and anti-inflammatory potential of lupeol isolated from Indian traditional plant Crateva adansonii act as a multi-target agent with immense anti-inflammatory potential targeting key molecules of inflammation such as MPO, PGE2, and eight pro-inflammatory cytokine markers. Outcome of present study is to find promising anti-inflammatory bioactive agents from the cheapest Indian traditional medicinal plant sources useful for pharmaceutical industries.


2020 ◽  
Vol 16 ◽  
Author(s):  
Anju Manuja ◽  
Nitu Rathore ◽  
Shalki Chaudhary ◽  
Balvinder Kumar

Background: Lawsonia inermis Linn popularly known as the Henna has played an important role in ayurvedic or natural herbal medicines. The presence of phyto-constituents in henna, that may affect the animal or human health adversely, need to be elucidated for L. inermis Linn species grown in India. Introduction: Introduction: The aim of this research was to perform phytochemical, cytotoxicity and anti-inflammatory studies to understand the potential of leaves of Lawsonia inermis of Indian origin to provide a way forward for therapeutic use in medicine. Methods: We assessed the phytochemical profile for presence of phyto-constituents (alkaloids, carbohydrates, glycosides, steroids, flavonoids, saponins, tannins, proteins/amino acids and gums/mucilage) from various extracts of the plant leaves’. The extracts were further purified by column chromatography for the isolation of plant constituents and monitored by TLC, analyzed by Fourier transform infrared FT-IR spectroscopy, H1NMR, and GC-MS analysis. Fractions were assessed for cytotoxicity and anti-inflammatory properties at various concentrations. We assessed the anti-inflammatory activity by nitric oxide production in various leaf extracts determined by Griess assay. Results: All the spectral results suggest that the compounds from the extract contain aromatic nucleus and OH group along with methoxy group, allyl as well as vinyl group. Fractions of chloroform/methanolic (7:3) leaf extract of Lawsonia inermis confirmed the presence of the two constituents i.e. fraxetin and 1(3H)-isobenzofuranone. We observed significant difference in cytotoxicity at higher concentrations in methanol and chloroform:methanol (8:2) leaf extracts (p>0.05), we could not find any significant differences amongst other leaf extracts at different concentrations. Some leaf extracts have potential cytotoxic activity on vero cells. Reducing the chloroform concentration during extraction decreases the cytotoxic effect on the cells. The nitric oxide levels decreased from 1000 µg/ml concentration to lower concentrations with varying degree. Overall the highest nitric oxide production by CHCl3 (70%)/ MeOH (30%) was observed amongst various fractions at different concentrations. Conclusion: The phytochemical, cytotoxicity and anti-inflammatory studies indicating the potential of leaves of the plant to provide a way further for their use in medicine. Fraxetin 1(3H)-isobenzofuranone structures were confirmed in fractions of CHCl3 (70%)/ MeOH (30%) extract as observed as a potent constituents. Some leaf extracts have potential cytotoxic activity on vero cells. Reducing the chloroform concentration during extraction decreases the cytotoxic effect on the cells.The cytotoxicity studies indicates the presence of cytotoxic compounds in some of these extracts, warranting research for fabrication of suitable formulations comprising these constituents to reduce its dose/toxicity for the use of beneficial effects of the plant components.


Sign in / Sign up

Export Citation Format

Share Document