Effect of bromide ion on isolated fractions of dissolved organic matter in secondary effluent during chlorination

2008 ◽  
Vol 157 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Shuang Xue ◽  
Qing-Liang Zhao ◽  
Liang-Liang Wei ◽  
Ting Jia
Author(s):  
Natália Rodrigues Guimarães ◽  
Fabiane Dörr ◽  
Rodrigo de Oliveira Marques ◽  
Ernani Pinto ◽  
Sidney Seckler Ferreira Filho

2013 ◽  
Vol 316-317 ◽  
pp. 323-326
Author(s):  
Chao Jie Zhang ◽  
Si Bo Li ◽  
Qian Chen ◽  
Qi Zhou

Dissolved organic matter (DOM) may do harms to human beings. After disinfected by chlorine (amine), DOM can form disinfection by-products (DBPs) which can be mutagenic, teratogenic and carcinogenic. Characterization and source of trihalomethane precursors in the secondary effluent by sequencing batch reactors were investigated. CHCl3 was the primary DBPs. The results showed that the precursors of CHCl3 were mainly strongly hydrophobic DOM, while CHCl2Br and CHClBr2 were mainly formed from hydrophilic DOM. The effects of different powder media (activated carbon, zeolite) on removal of DOM were compared. The results showed that the dosing of powder media can promote the removal of DOM and the DBPs precursors.


2016 ◽  
Vol 74 (6) ◽  
pp. 1346-1353 ◽  
Author(s):  
Xiaolei Shi ◽  
Chunhua Xu ◽  
Hongying Hu ◽  
Fang Tang ◽  
Lijuan Sun

Meeting the regulatory discharge standards for pulp and paper mill wastewater has become ever more difficult because of its recalcitrant and colored dissolved organic matter (DOM). In this study, the variation of DOM from the secondary effluent of pulp and paper mill wastewater before and after coagulation was investigated based on hydrophobicity/hydrophilicity, apparent molecular weight (MW) and fluorescence. DOM fractions of the secondary effluent were all with the apparent MW <20 kDa. Particularly, the hydrophobic acids (HOA) fraction, mainly composed of humic-like materials, was the major component, and it also had the highest color and SUVA254 (UV254 to dissolved organic carbon ratio). Hydrophilic bases (HIB) and hydrophilic neutrals (HIN) fractions were the other important parts besides HOA. Coagulation can remove all DOM fractions to different extent, and it was more effective for organic compounds with MW > 5 kDa. The removal efficiencies of humic-like, fulvic-like and soluble microbial by-product-like constituents in HOA and HIB fractions were much higher than in other fractions. Even so, the coagulation effluent still contained large amounts of contaminants with complicated fluorophores and apparent MW <5 kDa, and HOA and HIN fractions were also the major parts in the coagulation effluent.


2009 ◽  
Vol 169 (1-3) ◽  
pp. 1012-1021 ◽  
Author(s):  
Liang-Liang Wei ◽  
Qing-Liang Zhao ◽  
Shuang Xue ◽  
Chein-Chi Chang ◽  
Feng Tang ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2627
Author(s):  
Donata Dubber ◽  
Jan Knappe ◽  
Laurence W. Gill

This research has used fluorescence spectroscopy and parallel factor analysis (PARAFAC) in order to characterize dissolved organic matter in septic tank effluent, as it passes through the biomat/biozone, infiltrating into the unsaturated zone beneath domestic wastewater treatment systems (DWWTSs). Septic tank effluent and soil moisture samples from the percolation areas of two DWWTSs have been analyzed using fluorescence excitation–emission spectroscopy. Using PARAFAC analysis, a six-component model was obtained whereby individual model components could be assigned to humified organic matter, fluorescent whitening compounds (FWCs), and protein-like compounds. This has shown that fluorescent dissolved organic matter (FDOM) in domestic wastewater was dominated by protein-like compounds and FWCs and that, with treatment in the percolation area, protein-like compounds and FWCs are removed and contributions from terrestrially derived (soil) organic decomposition compounds increase, leading to a higher degree of humification and aromaticity. The results also suggest that the biomat is the most important element determining FDOM removal and consequently affecting DOM composition. Furthermore, no significant difference was found in the FDOM composition of samples from the percolation area irrespective of whether they received primary or secondary effluent. Overall, the tested fluorometric methods were shown to provide information about structural and functional properties of organic matter which can be useful for further studies concerning bacterial and/or virus transport from DWWTSs.


Sign in / Sign up

Export Citation Format

Share Document